Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.514
Index Copernicus  – 152.95 pts
MNiSW – 40 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2012, vol. 21, nr 6, November-December, p. 767–771

Publication type: original article

Language: English

The Decrease in Prolidase Activity in Myeloproliferative Neoplasms

Zmniejszona aktywność prolidazy w nowotworach mieloproliferacyjnych

Jadwiga Nowicka1,2,A,B,C,D, Wiesława Nahaczewska1,B,C,D, Henryk Owczarek1,B,C,D, Mieczysław Woźniak1,3,C,D,E

1 Department of Medical Laboratory Diagnostics, Wroclaw Medical University, Poland

2 Department of Hematology, Wroclaw Medical University, Poland

3 Department of Pharmacology, University of Saskatchewan, Saskatoon, Canada

Abstract

Backgraound. The development of bone marrow fibrosis is a severe complication in hematological diseases. The progress of bone marrow myelofibrosis is evaluated by a trephine examination and may be characterized by the biochemical markers of collagen turnover determination.
Objectives. Investigation of serum prolidase activity and biochemical markers of collagen metabolism in order to establish its role in the development of bone marrow fibrosis.
Material and Methods. The group of 37 patients with myeloproliferative neoplasms (MPN) before treatment, consisted of 16 patients with chronic myeloid leukemia (CML), 7 with primary myelofibrosis (PMF), 8 with essential thrombocythopenia (ET), and 6 with polycythemia vera (PV).
Results. It was found that the plasma activity of prolidase (Pro) was reduced to almost half together with the serum level of osteocalcin (BGL), and hydroxyproline (H-PRO) in the serum and urine of patients with MPN in comparison to the control group. In the MPN group of patients, the levels of N-terminal procollagen III peptide (PIIINP), type I procollagen (PICP) and the C-terminal telopeptide of type I collagen (ICTP) were significantly higher.
Conclusion. The alteration of collagen turnover markers in the MPN patient group (the elevation of synthesis and inhibition of collagen catabolism rate) has suggested that a diminished prolidase activity may contribute to such alteration of collagen metabolism and should be consider a biomarker of MPN progress.

Streszczenie

Wprowadzenie. Rozwój zwłóknienia szpiku kostnego jest powikłaniem w wielu chorobach hematologicznych. Ocena histopatologiczna trepanobioptatu w chorobach mieloproliferacyjnych jest wykładnikiem stopnia zwłóknienia szpiku kostnego, a badane markery metabolizmu kolagenu mogą być biochemicznym sygnałem toczącego się procesu włóknienia.
Materiał i metody. Grupa chorych na nowotwory mieloproliferacyjne (MPN) liczyła 37 pacjentów, w tym 16 z przewlekłą białaczką szpikową (CML), 7 z pierwotnym zwłóknieniem szpiku (PMF), 8 z nadpłytkowością samoistną (ET) i 6 z czerwienicą prawdziwą (PV).
Wyniki. Stwierdzono znaczące, 2-krotne zmniejszenie aktywności prolidazy w osoczu oraz zmniejszenie stężenia osteokalcyny (BLG) w surowicy, hydroksyproliny (OH-pro) w surowicy i moczu w porównaniu z grupą kontrolną. Jednocześnie stwierdzono zwiększone stężenie N-końcowego propeptydu prokolagenu typu III (PIIINP), propeptydu prokolagenu typu I (PICP) oraz C-końcowego telopeptydu kolagenu typu I (ICTP) w grupie chorych na MPN.
Wnioski. Znaczące zmiany w stężeniu markerów metabolizmu kolagenu wskazujące na wzmożenie syntezy i zahamowanie katabolizmu tego białka sugerują, że ograniczenie aktywności prolidazy może mieć istotny wpływ na rozwój procesu włóknienia szpiku kostnego, którą należy rozważyć jako wskaźnik rozwoju choroby.

Key words

collagen, markers of bone metabolism, prolidase, myeloproliferative neoplasms

Słowa kluczowe

kolagen, markery metabolizmu kostnego, prolidaza, nowotwory mieloproliferacyjne

References (23)

  1. Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Valt J, Orazi A: European consensus on grading bone marrow fibrosis and assessment of cellularity. Hematology 2005, 90, 1128–1132.
  2. Lev PR, Marta RF, Vassallu P, Molinas FC: Variation in PDGF, TGF beta and bFGF levels in essential thrombocythemia patients treated with anagrelide. Am J Hematol 2002, 70, 85–91.
  3. Reilly JT: Pathogenesis of idiopathic myelofibrosis present status and future directions. Brit J Haematol 1994, 88, 1–8.
  4. Sundstrom G, Hultdin M, Engelstrom-Laurent IM, Dahl S: Bone marrow hyaluronan and reticulin in patients with malignant disorders. Med Oncol 2010, 27, 618–623.
  5. Prokop DJ, Kivirikko KJ: Collagens: molecular biology, diseases and potentials for therapy. Ann Rev Biochem 1995, 64, 403–434.
  6. Sewald N, Jakubke H-D: Peptides: chemistry and biology. Wiley-VCHVerlag GmbHand K Gas, 2-ed., Weinheim 2009, 71–73.
  7. Campbell PJ, Bareford D, Erber WN, Wilkims BS, Wright P, Buck G, Wheatley K, Harrison CN, Green A: Reticulin accumulation in essential thrombocythemia: prognostic significance and relationship to therapy. J Clin Oncol 2009, 27, 2991–2999.
  8. Surażynski A, Miltyk W, Palka J, Phang JM: Prolidase dependent regulation of collagen biosynthesis. Amino Acids 2008, 35, 731–738.
  9. Falik-Zaccai TC, Khayat M, Luder A, Frenkel P, Magen D, Brik R, Gershoni-Baruch R, Mandel H: A broad spectrum of developmental delay in a large cohort of prolidase deficiency patients demonstrates marked interfamilial and intrafamilial phenotypic variability. Am J Med Gen B Neuropsychiatr Gen 2010, 153B, 45–56.
  10. Miech G, Myara I, Mangeot M, Voigtlander V, Lemounier A: Prolinase activity in prolidase deficient fibroblasts. J Inherit Metab Dis 1988, 11, 266–269.
  11. Karna E, Trojan S, Palka JA: The mechanism of butyrate-induced collagen biosynthesis in cultured fibroblasts. Acta Pol Pharm 2009, 66, 129–134.
  12. Myara I, Myara A, Mangeot M, Fabre M, Charpentier Ch, Lemonnier A: Plasma prolidase activity: a possible index of collagen catabolism in chronic liver disease. Clin Chem 1984, 30, 211–215.
  13. Myara I, Marcon P, Lemonnier A: Determination of prolinase activity in plasma. Application to liver disease and its relation with prolidase activity. Clin Biochem 1985, 18, 220–223.
  14. Prokop DJ, Kivirikko KI: Relationship of hydroxyproline excretion in urine to collagen metabolism. Ann Intern Med 1967, 66, 1243–1266.
  15. Bandt AJ, Rawling ND,Woessner JF: Handbook of Proteolytic Enzymes. 2 ed. Elsevier, Academic Press 2008, 1020–1021.
  16. Erbagci AB, Araz M, Erbagci A, Tarakcioglu M, Namiduru ES: Serum prolidase activity as a marker of osteoporosis in type 2 diabetes mellitus. Clin Biochem 2002, 35, 263–268.
  17. Verit FF, Geyikli I, Yazgan P, Celik A: Correlations of serum prolidase activity between bone turnover markers and mineral density in postmenopausal osteoporosis. Arch Gynecol Obstet 2006, 274, 133–137.
  18. Altindag O, Erel O, Aksoy N, Selek S, Celik H, Karaoglanoglu M: Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis. Rheumatol Int 2007, 27, 339–344.
  19. Podolak-Dawidziak M, Wróbel T, Jeleń M: Levels of procollagen type III n-terminal peptide (PIIINP) in serum of patients with myeloproliferative syndrome (mps). Pol Arch Med Wewn 1998, 99, 24–29.
  20. Barosi G, Costa A, Liberato LN, Polino G, Spriano P, Magrini U: Serum procollagen-III-peptide level correlates with disease activity in myelofibrosis with myeloid metaplasia. Br J Haematol 1989, 72, 16–20.
  21. Reilly JT, Barnett D, Dolan G, Forrest P, Eastham J, Smith A: Characterization of an acute micromegakaryocytic leukaemia: evidence for the pathogenesis of myelofibrosis. Br J Haematol 1993, 83, 58–62.
  22. Garnero P, Grunaux M, Seguin P, Delmas PD: Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro. J Bone Miner Res 1994, 9, 255–264.
  23. Bacher U, Asenova S, Badbaran A, Zandler AR, Alchalby H, Fehse B, Kröger N, Lange C, Ayuk F: Bone marrow mesenchymal stromal cells remain of recipient origin after allogenic SCT and do not harbor the JAK2V617F mutation in patients with myelofibrosis. Clin Exp Med 2010, 10, 205–208.