Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.727
Index Copernicus  – 152.95 pts
MNiSW – 40 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/135045

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Analysis and comparison of autologous platelet-rich plasma preparation systems used in the treatment of enthesopathies: A preliminary study

Maciej Dejnek1,2,A,B,C,D,E,F, Helena Moreira3,A,B,C, Sylwia Płaczkowska4,B, Piotr Morasiewicz5,A,E, Ewa Barg3,A,E, Jarosław Witkowski1,2,D,E, Paweł Reichert1,A,E,F

1 Department of Trauma and Hand Surgery, Wroclaw Medical University, Poland

2 Department of Sports Medicine, Wroclaw Medical University, Poland

3 Department of Basic Medical Sciences, Wroclaw Medical University, Poland

4 Diagnostic Laboratory for Teaching and Research, Department of Laboratory Diagnostics, Wroclaw Medical University, Poland

5 Department of Orthopaedic and Trauma Surgery, Institute of Medical Sciences, University of Opole, Poland

Abstract

Background. Autologous platelet-rich plasma (PRP) injection is an alternative but widely accepted method for the treatment of degenerative changes in tendon attachments known as enthesopathies. The PRP is considered a safe source for high concentrations of the growth factors involved in the healing process. Despite initial promising outcomes, many recent studies report conflicting results for this treatment. This may be due to differences in the concentrations of platelets and growth factors in PRPs obtained using different methods.
Objectives. The aim of this study was to compare PRP preparation systems in terms of morphotic components and selected growth factors to find the most appropriate procedure for the treatment of enthesopathies.
Material and Methods. Whole blood samples from 6 healthy male volunteers were collected. Using different commercial kits (Mini GPS III System, Arthrex ACP, and Xerthra, Dr. PRP), 4 PRPs were prepared from the blood of each participant. All samples were analyzed for the content of morphotic components and the following growth factors: transforming growth factor-β1 (TGF-β1), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor AA (PDGF-AA).
Results. The Mini GPS III produced PRP with the highest concentration of platelets and white blood cells (WBC) compared to the other systems included in the study. Significant differences in the levels of EGF and PDGF-AA were found only between the Mini GPS III and Arthrex ACP. There was positive correlation between the content of platelets and the levels of PDGF-AA and EGF. The red blood cells (RBC) concentration positively correlated with PDGF-AA, EGF and VEGF.
Conclusion. This study showed differences between the morphotic components and levels of selected growth factors in PRP obtained with the different preparation methods. Due to insufficient data, we cannot argue for or against any of the studied protocols for the treatment of enthesopathy. Further studies on a larger population are required to validate our results.

Key words

platelet-rich plasma, growth factors, platelet-derived growth factor, enthesopathy

References (33)

  1. Fitzpatrick J, Bulsara M, Zheng MH. The effectiveness of platelet-rich plasma in the treatment of tendinopathy. Am J Sports Med. 2017;45(1):226–233. doi:10.1177/0363546516643716
  2. Mi B, Liu G, Zhou W, et al. Platelet rich plasma versus steroid on lateral epicondylitis: Meta-analysis of randomized clinical trials. Phys Sportsmed. 2017;45(2):97–104. doi:10.1080/00913847.2017.1297670
  3. Królikowska A, Sikorski Ł, Czamara A, Reichert P. Are the knee extensor and flexor muscles isokinetic parameters affected by the duration of postoperative physiotherapy supervision in patients eight months after ACL reconstruction with the use of semitendinosus and gracilis tendons autograft? Acta Bioeng Biomech. 2018;20(4):89–100. doi:10.5277/ABB-01149-2018-02
  4. Sánchez-González DJ, Méndez-Bolaina E, Trejo-Bahena NI. Platelet-rich plasma peptides: Key for regeneration. Int J Pept. 2012;2012:532519. doi:10.1155/2012/532519.
  5. Creaney L, Hamilton B. Growth factor delivery methods in the management of sports injuries: The state of play. Br J Sports Med. 2008;42(5):314–320. doi:10.1136/bjsm.2007.040071
  6. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–870. doi:10.1152/physrev.2003.83.3.835
  7. Molloy T, Wang Y, Murrell GAC. The roles of growth factors in tendon and ligament healing. Sport Med. 2003;33(5):381–394. doi:10.2165/00007256-200333050-00004
  8. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: A review of the literature. J Bone Joint Surg Br. 2009;91(8):987–996. doi:10.1302/0301-620X.91B8.22546
  9. Tenore G, Zimbalatti A, Rocchetti F, et al. Management of medication-related osteonecrosis of the kaw (MRONJ) using leukocyte- and platelet-rich fibrin (L-PRF) and photobiomodulation: A retrospective study. J Clin Med. 2020;9(11):3505. doi:10.3390/jcm9113505
  10. Suthar M, Gupta S, Bukhari S, Ponemone V. Treatment of chronic non-healing ulcers using autologous platelet rich plasma: A case series. J Biomed Sci. 2017;24(1):16. doi:10.1186/s12929-017-0324-1
  11. Tietze DC, Geissler K, Borchers J. The effects of platelet-rich plasma in the treatment of large-joint osteoarthritis: A systematic review. Phys Sportsmed. 2014;42(2):27–37. doi:10.3810/psm.2014.05.2055
  12. Moraes VY, Lenza M, Tamaoki MJ, Faloppa F, Belloti JC. Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev. 2013;12:CD010071. doi:10.1002/14651858.CD010071.pub2
  13. Scott A, LaPrade RF, Harmon KG, et al. Platelet-rich plasma for patellar tendinopathy: A randomized controlled trial of leukocyte-rich PRP or leukocyte-poor PRP versus saline. Am J Sports Med. 2019;47(7):1654–1661. doi:10.1177/0363546519837954
  14. Navani A, Li G, Chrystal J. Platelet rich plasma in musculoskeletal pathology: A necessary rescue or a lost cause? Pain Physician. 2017;20(3):E345–E356. doi:10.36076/ppj.2017.e356
  15. Wasterlain AS, Braun HJ, Dragoo JL. Contents and formulations of platelet-rich plasma. Oper Tech Orthop. 2012;22(1):33–42. doi:10.1053/j.oto.2011.11.001
  16. Kushida S, Kakudo N, Morimoto N, et al. Platelet and growth factor concentrations in activated platelet-rich plasma: A comparison of seven commercial separation systems. J Artif Organs. 2014;17(2):186–192. doi:10.1007/s10047-014-0761-5
  17. Magalon J, Bausset O, Serratrice N, et al. Characterization and comparison of 5 platelet-rich plasma preparations in a single-donor model. Arthroscopy. 2014;30(5):629–638. doi:10.1016/j.arthro.2014.02.020
  18. Castillo TN, Pouliot MA, Kim HJ, Dragoo JL. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med. 2011;39(2):266–271. doi:10.1177/0363546510387517
  19. Oudelaar BW, Peerbooms JC, Huis In ‘t Veld R, Vochteloo AJH. Concentrations of blood components in commercial platelet-rich plasma separation systems: A review of the literature. Am J Sports Med. 2019;47(2):479–487. doi:10.1177/0363546517746112
  20. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: From pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27(3):158–167. doi:10.1016/j.tibtech.2008.11.009
  21. Delong JM, Russell RP, Mazzocca AD. Platelet-rich plasma: The PAW classification system. Arthroscopy. 2012;28(7):998–1009. doi:10.1016/j.arthro.2012.04.148
  22. Zimmermann R, Arnold D, Strasser E, et al. Sample preparation technique and white cell content influence the detectable levels of growth factors in platelet concentrates. Vox Sang. 2003;85(4):283–289. doi:10.1111/j.0042-9007.2003.00361.x
  23. Oh JH, Kim WOO, Park KU, Roh YH. Comparison of the cellular composition and cytokine-release kinetics of various platelet-rich plasma preparations. Am J Sports Med. 2015;43(12):3062–3070. doi:10.1177/0363546515608481
  24. Mazzocca AD, McCarthy MB, Chowaniec DM, et al. Platelet-rich plasma differs according to preparation method and human variability. J Bone Joint Surg Am. 2012;94(4):308–316. doi:10.2106/JBJS.K.00430
  25. Graziani F, Ivanovski S, Cei S, Ducci F, Tonetti M, Gabriele M. The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin Oral Implants Res. 2006;17(2):212–219. doi:10.1111/j.1600-0501.2005.01203.x
  26. Marx RE. Platelet-rich plasma (PRP): What is PRP and what is not PRP? Implant Dent. 2001;10(4):225–228. doi:10.1097/00008505-200110000-00002
  27. Mazzucco L, Balbo V, Cattana E, Guaschino R, Borzini P. Not every PRP-gel is born equal. Evaluation of growth factor availability for tissues through four PRP-gel preparations: Fibrinet®, RegenPRP-Kit®, Plateltex® and one manual procedure. Vox Sang. 2009;97(2):110–118. doi:10.1111/j.1423-0410.2009.01188.x
  28. Królikowska A, Reichert P, Czamara A, Krzemińska K. Peak torque angle of anterior cruciate ligament-reconstructed knee flexor muscles in patients with semitendinosus and gracilis autograft is shifted towards extension regardless of the postoperative duration of supervised physiotherapy. PLoS One. 2019;14(2):e0211825. doi: 10.1371/journal.pone.0211825
  29. Sundman EA, Cole BJ, Fortier LA. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med. 2011;39(10):2135–2140. doi:10.1177/0363546511417792
  30. Cieślik-Bielecka A, Reichert P, Skowroński R, Królikowska A, Bielecki T. A new aspect of in vitro antimicrobial leukocyte- and platelet-rich plasma activity based on flow cytometry assessment. Platelets. 2019;30(6):728–736. doi:10.1080/09537104.2018.1513472
  31. Kobayashi Y, Saita Y, Nishio H, et al. Leukocyte concentration and composition in platelet-rich plasma (PRP) influences the growth factor and protease concentrations. J Orthop Sci. 2016;21(5):683–689. doi:10.1016/j.jos.2016.07.009
  32. McCarrel TM, Minas T, Fortier LA. Optimization of leukocyte concentration in platelet-rich plasma for the treatment of tendinopathy. J Bone Joint Surg Am. 2012;94(19):e143(1). doi:10.2106/JBJS.L.00019
  33. Zhang L, Chen S, Chang P, et al. Harmful effects of leukocyte-rich platelet-rich plasma on rabbit tendon stem cells in vitro. Am J Sports Med. 2016;44(8):1941–1951. doi:10.1177/0363546516644718