Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.727
Index Copernicus  – 152.95 pts
MNiSW – 40 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/134166

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Lethal and life-limiting skeletal dysplasias: Selected prenatal issues

Agnieszka Stembalska1,A,B,C,D,E,F, Lech Dudarewicz2,D,E, Robert Śmigiel3,D,E,F

1 Department of Genetics, Wroclaw Medical University, Poland

2 Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, Łódź, Poland

3 Department of Pediatrics and Rare Disorders, Wroclaw Medical University, Poland

Abstract

Skeletal dysplasias are a heterogeneous group of congenital bone and cartilage disorders with a genetic etiology. The current classification of skeletal dysplasias distinguishes 461 diseases in 42 groups. The incidence of all skeletal dysplasias is more than 1 in every 5000 newborns. The type of dysplasia and associated abnormalities affect the lethality, survival and long-term prognosis of skeletal dysplasias. It is crucial to distinguish skeletal dysplasias and correctly diagnose the disease to establish the prognosis and achieve better management. It is possible to use prenatal ultrasonography to observe predictors of lethality, such as a bell-shaped thorax, short ribs, severe femoral shortening, and decreased lung volume. Individual lethal or life-limiting dysplasias may have more or less specific features on prenatal ultrasound. The prenatal features of the most common skeletal dysplasias, such as thanatophoric dysplasia, osteogenesis imperfecta type II, achondrogenesis, and campomelic dysplasia, are discussed in this article. Less frequent dysplasias, such as asphyxiating thoracic dystrophy, fibrochondrogenesis, atelosteogenesis, and homozygous achondroplasia, are also discussed.

Key words

prenatal diagnostic, skeletal dysplasia, lethal, life-limiting

References (31)

  1. Mortier GR, Cohn DH, Cormier-Daire V, et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet A. 2019;179(12):2393–2419. doi:10.1002/ajmg.a.61366
  2. Savarirayan R, Rossiter JP, Hoover-Fong JE, et al; Skeletal Dysplasia Management Consortium. Best practice guidelines regarding prenatal evaluation and delivery of patients with skeletal dysplasia. Am J Obstet Gynecol. 2018;219(6):545–562. doi:10.1016/j.ajog.2018.07.017
  3. Noel AE, Brown RN. Advances in evaluating the fetal skeleton. Int J Womens Health. 2014;13(6):489–500. doi:10.2147/IJWH.S47073
  4. Krakow D. Skeletal dysplasias. Clin Perinatol. 2015;42(2):301–319. doi:10.1016/j.clp.2015.03.003
  5. Cho SY, Jin DK. Genetic skeletal dysplasias for pediatricians. Ann Pediatr Endocrinol Metab. 2015;20(4):187–191. doi:10.6065/apem.2015.20.4.187
  6. Krakow D, Rimoin D. The skeletal dysplasias. Genet Med. 2010;12(6):327–341. doi:10.1097/GIM.0b013e3181daae9b
  7. Ipek MS, Ozmen CA. Skeletal dysplasias that cause thoracic insufficiency in neonates. Medicine (Baltimore). 2016;95(14):e3298. doi:10.1097/MD.0000000000003298
  8. Schramm T, Mommsen H. Fetal skeletal disorders. Ultraschall Med. 2018;39(6):61–634. doi:10.1055/a-0660-9417
  9. Campeau P, Schlesinger AE. Skeletal dysplasias. Endotext. South Dartmouth, USA: MDText.com, Inc. https://www.ncbi.nlm.nih.gov/books/NBK279130/. Updated January 30, 2017.
  10. Chaudhary V, Bano S. Imaging in short stature. Indian J Endocrinol Metab. 2012;16(5):692–697. doi:10.4103/2230-8210.100641
  11. Sewell MD, Chahal A, Al-Hadithy N, Blunn GW, Molloy S, Hashemi-Nejad A. Genetic skeletal dysplasias: A guide to diagnosis and management. J Back Musculoskelet Rehabil. 2015;28(3):575–590. doi:10.3233/BMR-140558
  12. Victoria T, Zhu X, Lachman R, et al. What is new in prenatal skeletal dysplasias? AJR Am J Roentgenol. 2018;210(5):1022–1033. doi:10.2214/AJR.17.19337
  13. Krakow D, Lachman RS, Rimoin DL. Guidelines for the prenatal diagnosis of fetal skeletal dysplasias. Genet Med. 2009;11(2):127–133. doi:10.1097/GIM.0b013e3181971ccb
  14. Schramm T, Gloning KP, Minderer S, et al. Prenatal sonographic diagnosis of skeletal dysplasias. Ultrasound Obstet Gynecol. 2009;34(2):160–170. doi:10.1002/uog.6359
  15. Milks KS, Hill LM, Hosseinzadeh K. Evaluating skeletal dysplasias on prenatal ultrasound: An emphasis on predicting lethality. Pediatr Radiol. 2017;47(2):134–145. doi:10.1007/s00247-016-3725-5
  16. Alanay Y, Lachman RS. A review of the principles of radiological assessment of skeletal dysplasias. J Clin Res Pediatr Endocrinol. 2011;3(4):163–178. doi:10.4274/jcrpe.463
  17. Watson SG, Calder AD, Offiah AC, Negus S. A review of imaging protocols for suspected skeletal dysplasia and a proposal for standardisation. Pediatr Radiol. 2015;45(12):1733–1737. doi:10.1007/s00247-015-3381-1
  18. Hurst JA, Firth HV, Smithson S. Skeletal dysplasias. Semin Fetal Neonatal Med. 2005;10(3):233–241. https://doi.org/10.1016/j.siny.2004.12.001
  19. Chandler N, Best S, Hayward J, et al. Rapid prenatal diagnosis using targeted exome sequencing: A cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management. Genet Med. 2018;20(11):1430–1437. doi:10.1038/gim.2018.30
  20. Tang J, Zhou C, Shi H, et al. Prenatal diagnosis of skeletal dysplasias using whole exome sequencing in China. Clin Chim Acta. 2020;507:187–193. doi:10.1016/j.cca.2020.04.031
  21. Liu Y, Wang L, Yang YK, et al. Prenatal diagnosis of fetal skeletal dysplasia using targeted next-generation sequencing: An analysis of 30 cases. Diagn Pathol. 2019;14(1):76. doi:10.1186/s13000-019-0853-x
  22. Savoldi AM, Villar MAM, Machado HN, Llerena Júnior JC. Fetal skeletal lethal dysplasia: Case report. Rev Bras Ginecol Obstet. 2017;39(10):576–582. doi:10.1055/s-0037-1603943
  23. French T, Savarirayan R. Thanatophoric dysplasia. GeneReviews®. Seattle, USA: University of Washington. https://www.ncbi.nlm.nih.gov/books/NBK1366/. Published May 21, 2004. Updated June 18, 2020.
  24. Wainwright H. Thanatophoric dysplasia: A review. S Afr Med J. 2016;106(6 Suppl 1):S50–S53. doi:10.7196/SAMJ.2016.v106i6.10993
  25. Steiner RD, Basel D. COL1A1/2 Osteogenesis imperfecta. GeneReviews®. Seattle, USA: University of Washington. https://www.ncbi.nlm.nih.gov/books/NBK1295/. Published January 28, 2005. Updated December 12, 2019.
  26. Gregersen PA, Savarirayan R. Type II collagen disorders overview. GeneReviews®. Seattle, USA: University of Washington. https://www.ncbi.nlm.nih.gov/books/NBK540447/. Published April 25, 2019.
  27. Bonafé L, Mittaz-Crettol L, Ballhausen D, Superti-Furga A. Achondrogenesis type 1B. GeneReviews®. Seattle, USA: University of Washington. https://www.ncbi.nlm.nih.gov/books/NBK1516/. Published August 30, 2002. Updated November 14, 2013.
  28. Unger S, Scherer G, Superti-Furga A. Campomelic dysplasia. GeneReviews®. Seattle, USA: University of Washington. https://www.ncbi.nlm.nih.gov/books/NBK1760/. Published July 31, 2008. Updated May 9, 2013.
  29. Waters AM, Beales PL. Ciliopathies: An expanding disease spectrum. Pediatr Nephrol, 2011;26:1039–1056. doi:10.1007/s00467-010-1731-7
  30. Bekdache GN, Begam MA, Chedid F, Al-Gazali L, Mirghani H. Fibrochondrogenesis: Prenatal diagnosis and outcome. J Obstet Gynaecol. 2013;33(7):663–668. doi:10.3109/01443615.2013.817977
  31. Superti-Furga A, Unger S. Atelosteogenesis type 2. GeneReviews®. Seattle, USA: University of Washington. https://www.ncbi.nlm.nih.gov/books/NBK1317/. Published August 3, 2002. Updated September 24, 2020.