Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1
5-Year Impact Factor – 2.2
Scopus CiteScore – 3.4 (CiteScore Tracker 3.7)
Index Copernicus  – 161.11; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

Ahead of print

doi: 10.17219/acem/133494

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

FGF21 promotes wound healing of rat brain microvascular endothelial cells through facilitating TNF-α-mediated VEGFA and ERK1/2 signaling pathway

Weiting Chen1,A,D,F, Zhongen Shen2,A,B,E, Shuiqi Cai1,B,C, Long Chen1,C, Dabin Wang1,E

1 No. 1 Department of Orthopedics, The Third People’s Hospital, Cixi, China

2 Department of Anesthesiology, Cixi People Hospital, China

Abstract

Background. Wound healing is an essential physiological process in recovery after microsurgery.
Objectives. To further understand the functions of fibroblast growth factor 21 (FGF21), the roles of this factor were examined and its correlations with inflammation, vascular endothelial growth factor A (VEGFA) and ERK1/2 signaling pathway activation were analyzed.
Material and Methods. Rat brain microvascular endothelial cells (RBMECs) were treated with interleukin (IL)-1β and used for the experiments. Cell Counting Kit-8 (CCK-8) was used to detect the cell viability of RBMECs after treatment with IL-1β (1 ng/mL) and FGF21 or VEGFA overexpression, while changes in apoptosis were measured through flow cytometry. Migration was checked through the scratch test. FGF21 and VEGFA RNA expression was assessed using reverse-transcription quantitative polymerase chain reaction (RT-qPCR), which was also used to examine RNA expression of Bcl-2, Bax and caspase-3. After IL-1β treatment and FGF21 overexpression, tumor necrosis factor alpha (TNF-α) and tumor growth factor β1 (TGF-β1) proteins level were observed with enzyme-linked immunosorbent assay (ELISA), which was also applied to check the expression of ERK1/2 after overexpression of FGF21 and VEGFA. PD98059 (50 μM), an ERK1/2 inhibitor, was used to examine the roles of ERK1/2 in regulating cell viability and apoptosis.
Results. The IL-1β treatment significantly decreased the viability of RBMECs and TGF-β1, but promoted cell apoptosis and TNF-α expression. FGF21 was downregulated by IL-1β treatment but its overexpression enhanced the viability of RBMECs and TGF-β1 and ERK1/2 protein levels, and attenuated cell apoptosis and TNF-α. Upregulated TNF-α restrained cell viability and apoptosis of RBMECs after FGF21 overexpression, and its upregulation not only suppressed FGF21, but also VEGFA. Moreover, VEGFA suppression by TNF-α increased cell viability and ERK1/2 protein levels, and suppressed the apoptosis of RBMECs through its upregulation. However, PD98059 obstructed the functions of FGF21 and VEGFA.
Conclusion. FGF21 promoted the cell viability of RBMECs through upregulating TNF-α-mediated VEGFA and ERK1/2 signaling.

Key words

VEGFA, FGF21, ERK1/2 signaling pathway, RBMEC

References (46)

  1. Morotti A, Poli P, Costa P. Acute stroke. Semin Neurol. 2019;39(1):61–72. doi:10.1055/s-0038-1676992
  2. O’Donnell MJ, Lim Chin S, Rangarajan S, et al; INTERSTROKE investigators. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): A case-control study. Lancet. 2016;388(10046):761–775. doi:10.1016/S0140-6736(16)30506-2
  3. Khandelwal P, Yavagal DR, Sacco RL. Acute ischemic stroke intervention. J Am Coll Cardiol. 2016;67(22):2631–2644. doi:10.1016/j.jacc.2016.03.555
  4. Saver JL. Time is brain-quantified. Stroke. 2006;37(1):263–266. doi:10.1161/01.STR.0000196957.55928.ab
  5. Wang A, Abramowicz AE. Endovascular thrombectomy in acute ischemic stroke: New treatment guide. Curr Opin Anaesthesiol. 2018;31(4):473–480. doi:10.1097/ACO.0000000000000621
  6. Peschillo S, Diana F, Berge J, Missori P. A comparison of acute vascular damage caused by ADAPT versus a stent retriever device after thrombectomy in acute ischemic stroke: A histological and ultrastructural study in an animal model. J Neurointerv Surg. 2017;9(8):743–749. doi:10.1136/neurintsurg-2016-012533
  7. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35–43. doi:10.1159/000339613
  8. Mustoe TA, O’Shaughnessy K, Kloeters O. Chronic wound pathogenesis and current treatment strategies: A unifying hypothesis. Plast Reconstr Surg. 2006;117(7 Suppl):35S–41S. doi:10.1097/01.prs.0000225431.63010.1b
  9. Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215–266. doi:10.1002/wdev.176
  10. Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: From feast to famine. Genes Dev. 2012;26(4):312–324. doi:10.1101/gad.184788.111
  11. Salminen A, Kaarniranta K, Kauppinen A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Res Rev. 2017;37:79–93. doi:10.1016/j.arr.2017.05.004
  12. Fisher FM, Chui PC, Nasser IA, et al. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology. 2014;147(5):1073–1083.e6. doi:10.1053/j.gastro.2014.07.044
  13. Wang N, Li JY, Li S, et al. Fibroblast growth factor 21 regulates foam cells formation and inflammatory response in Ox-LDL-induced THP-1 macrophages. Biomed Pharmacother. 2018;108:1825–1834. doi:10.1016/j.biopha.2018.09.143
  14. Liu H, Zhao Y, Zou Y, et al. Heparin-poloxamer hydrogel-encapsulated rhFGF21 enhances wound healing in diabetic mice. FASEB J. 2019;33(9):9858–9870. doi:10.1096/fj.201802600RR
  15. Coskun T, Bina HA, Schneider MA, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149(12):6018–6027. doi:10.1210/en.2008-0816
  16. Ye L, Wang X, Cai C, et al. FGF21 promotes functional recovery after hypoxic-ischemic brain injury in neonatal rats by activating the PI3K/Akt signaling pathway via FGFR1/β-klotho. Exp Neurol. 2019;317:34–50. doi:10.1016/j.expneurol.2019.02.013
  17. Nissen NN, Polverini PJ, Koch AE, Volin MV, Gamelli RL, DiPietro LA. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol. 1998;152(6):1445–1452. PMID:9626049
  18. Lim JC, Mattos M, Fang M, et al. TNFα contributes to diabetes impaired angiogenesis in fracture healing. Bone. 2017;99:26–38. doi:10.1016/j.bone.2017.02.014
  19. Jeon HH, Yu Q, Lu Y, et al. FOXO1 regulates VEGFA expression and promotes angiogenesis in healing wounds. J Pathol. 2018;245(3):258–264. doi:10.1002/path.5075
  20. Chamorro-Jorganes A, Lee MY, Araldi E, et al. VEGF-induced expression of miR-17-92 cluster in endothelial cells is mediated by ERK/ELK1 activation and regulates angiogenesis. Circ Res. 2016;118(1):38–47. doi:10.1161/CIRCRESAHA.115.307408
  21. Lee BC, Song J, Lee A, Cho D, Kim TS. Visfatin promotes wound healing through the activation of ERK1/2 and JNK1/2 pathway. Int J Mol Sci. 2018;19(11):3642. doi:10.3390/ijms19113642
  22. Wang R, et al. FGF21 regulates melanogenesis in alpaca melanocytes via ERK1/2-mediated MITF downregulation. Biochem Biophys Res Commun. 2017;490(2):466–471. doi:10.1016/j.bbrc.2017.06.064
  23. Liu Q, Wang S, Wei M, et al. Improved FGF21 sensitivity and restored FGF21 signaling pathway in high-fat diet/streptozotocin-induced diabetic rats after duodenal-jejunal bypass and sleeve gastrectomy. Front Endocrinol (Lausanne). 2019;10:566. doi:10.3389/fendo.2019.00566
  24. Cui J, Gong C, Cao B, Li L. MicroRNA-27a participates in the pathological process of depression in rats by regulating VEGFA. Exp Ther Med. 2018;15(5):4349–4355. doi:10.3892/etm.2018.5942
  25. Mahdavi S, Khodarahmi P, Roodbari NH. Effects of cadmium on Bcl-2/Bax expression ratio in rat cortex brain and hippocampus. Hum Exp Toxicol. 2018;37(3):321–328. doi:10.1177/0960327117703687
  26. Yin HY, Wei JR, Zhang R, Ye XL, Zhu YF, Li WJ. Effect of glutamine on caspase-3 mRNA and protein expression in the myocardium of rats with sepsis. Am J Med Sci. 2014;348(4):315–318. doi:10.1097/MAJ.0000000000000237
  27. Martuscello RT, Spengler RM, Boniu AC, et al. Increasing TNF levels solely in the rat hippocampus produces persistent pain-like symptoms. Pain. 2012;153(9):1871–1882. doi:10.1016/j.pain.2012.05.028
  28. Goyal M, Menon BK, van Zwam WH, et al; HERMES collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–1731. doi:10.1016/S0140-6736(16)00163-X
  29. Koge J, Kato S, Hashimoto T, Nakamura Y, Kawajiri M, Yamada T. Vessel wall injury after stent retriever thrombectomy for internal carotid artery occlusion with duplicated middle cerebral artery. World Neurosurg. 2019;123:54–58. doi:10.1016/j.wneu.2018.11.223
  30. Leishangthem L, Satti SR. Vessel perforation during withdrawal of Trevo ProVue stent retriever during mechanical thrombectomy for acute ischemic stroke. J Neurosurg. 2014;121(4):995–998. doi:10.3171/2014.4.JNS132187
  31. Arai D, Ishii A, Chihara H, Ikeda H, Miyamoto S. Histological examination of vascular damage caused by stent retriever thrombectomy devices. J Neurointerv Surg. 2016;8(10):992–995. doi:10.1136/neurintsurg-2015-011968
  32. Truong M, Bloch KM, Andersen M, Andsberg G, Töger J, Wassélius J. Subacute vessel wall imaging at 7-T MRI in post-thrombectomy stroke patients. Neuroradiology. 2019;61(10):1145–1153. doi:10.1007/s00234-019-02242-9
  33. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: A critical step during wound healing. Cell Mol Life Sci. 2016;73(20):3861–3885. doi:10.1007/s00018-016-2268-0
  34. Smigiel KS, Parks WC. Macrophages, wound healing, and fibrosis: Recent insights. Curr Rheumatol Rep. 2018;20(4):17. doi:10.1007/s11926-018-0725-5
  35. Huang SM, Wu CS, Chiu MH, et al. High glucose environment induces M1 macrophage polarization that impairs keratinocyte migration via TNF-α: An important mechanism to delay the diabetic wound healing. J Dermatol Sci. 2019;96(3):159–167. doi:10.1016/j.jdermsci.2019.11.004
  36. Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016;24(2):215–222. doi:10.1111/wrr.12398
  37. Zhang J, Li Z, Chen F, et al. TGF-β1 suppresses CCL3/4 expression through the ERK signaling pathway and inhibits intervertebral disc degeneration and inflammation-related pain in a rat model. Exp Mol Med. 2017;49(9):e379. doi:10.1038/emm.2017.136
  38. Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol. 2016;78:223–241. doi:10.1146/annurev-physiol-021115-105339
  39. Song YH, Zhu YT, Ding J, et al. Distribution of fibroblast growth factors and their roles in skin fibroblast cell migration. Mol Med Rep. 2016;14(4):3336–3342. doi:10.3892/mmr.2016.5646
  40. Hu S, Cao S, Tong Z, Liu J. FGF21 protects myocardial ischemia-reperfusion injury through reduction of miR-145-mediated autophagy. Am J Transl Res. 2018;10(11):3677–3688. PMID:30662618
  41. Ge X, Chen C, Hui X, Wang Y, Lam KS, Xu A. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J Biol Chem. 2011;286(40):34533–34541. doi:10.1074/jbc.M111.248591
  42. Chang X, Li S, Xue XD, Chang F. Propranolol regulates ERK1/2 signaling pathway and promotes chronic wound healing in diabetic rats. Eur Rev Med Pharmacol Sci. 2019;23(10):4498–4506. doi:10.26355/eurrev_201905_17962
  43. Díaz-Delfín J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F. TNF-α represses β-Klotho expression and impairs FGF21 action in adipose cells: Involvement of JNK1 in the FGF21 pathway. Endocrinology. 2012;153(9):4238–4245. doi:10.1210/en.2012-1193
  44. Ren S, Chen J, Duscher D, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res Ther. 2019;10(1):47. doi:10.1186/s13287-019-1152-x
  45. Zhang Q, Lu S, Li T, et al. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res. 2019;38(1):173. doi:10.1186/s13046-019-1156-5
  46. Wang Y, Zheng J, Han Y, et al. JAM-A knockdown accelerates the proliferation and migration of human keratinocytes, and improves wound healing in rats via FAK/Erk signaling. Cell Death Dis. 2018;9(9):848. doi:10.1038/s41419-018-0941-y