Clinical-pathological characteristics of patients treated for cancers of the eyelid skin and periocular areas

Robert Brodowski1,A–D, Paweł Pakla1,B,C, Mateusz Dymek1,C, Małgorzata Migut1,B, Miłosz Ambicki1,B, Wojciech Stopyra1,C, Dorota Ozga2,B, Bogumił Lewandowski1,A,E,F

1 Department of Maxillofacial Surgery, Frederic Chopin Clinical Hospital No. 1 in Rzeszów, Poland
2 Department of Emergency Medicine, Faculty of Medicine, University of Rzeszów, Poland

Address for correspondence
Robert Brodowski
E-mail: robert.brodowski@wp.pl

Funding sources
None declared

Conflict of interest
None declared

Acknowledgements
We would like to thank Dr. David Aebisher for linguistic editing.

Abstract

Background. Malignant cancers of the eyelid skin and the periocular area comprise 5–10% of facial skin malignant cancers. Basal cell carcinomas (BCCs) dominate, comprising approx. 80–90% of cancers of this area of the face. Considerably less often, in 9–14% of cases, squamous cell carcinomas (SCCs) are observed.

Objectives. The aim of this study is to provide an epidemiological-clinical assessment of patients treated over the period 2006–2015 for primary malignant cancers of the eyelid skin considering histological diagnosis and clinical staging.

Material and methods. This study was based on an analysis of the medical records of 262 patients. Demographic data, age, sex, size and location of lesions, histological types, and clinical staging were assessed.

Results. In the analyzed group of 262 patients, most were over the age of 60 years. Primary cancers were most frequently located in the area of the medial canthus of the eye and in the lower eyelid skin. They were mainly lesions of 6–10 mm and 16–20 mm with histologically diagnosed basal cell carcinoma of nodular and cystic types.

Conclusions. The most represented group was that of patients aged 60–70 years with primary cancers located in the medial canthus of the eye (47.3%) and in the lower eyelid. Basal cell carcinoma was diagnosed, mainly nodular and cystic types.

Key words: skin, malignant tumor, eyelid, epidemiological studies
Eyelids constitute a facial aesthetic unit that has a complex anatomical structure which, apart from the function of protecting the eyeball, is of high importance for expressing emotions, feelings and moods. Accordingly, the diagnostics and treatment of cancers located in this part of the face cause difficulties in surgical practice. Epidemiological data shows that 5–10% of malignant cancers of the facial skin affect eyelids and the periocular area.1–4

Environmental factors, among others, play a significant role in the etiopathogenesis of malignant skin cancers of the periocular tissues and face. Facial skin, including the periocular area, as an exposed part of body, is vulnerable to the intense effects of UVB radiation, mainly from sunlight. Other factors predisposing to facial skin cancer development are potentially malignant lesions, i.e., actinic keratosis, sunburn and pigment changes.5–8

Among the histological types of malignant eyelid cancers, the most common is basal cell carcinoma (BCC), which comprises approx. 80–90% of all cancers of this area of the face. Considerably less often, in 9–14% of cases, squamous cell carcinoma (SCC) is observed. Adenocarcinomas are least often diagnosed.9–12

Objectives

The aim of this study was to provide an epidemiological-clinical assessment of patients treated at the Department of Maxillofacial Surgery of the Frederic Chopin Clinical Regional Hospital in Rzeszów, Poland, over the period 2006–2015 for primary malignant cancers of the eyelid skin and periocular tissues. Demographic data, age, sex, size and location of lesions, histological types, and clinical staging were assessed. The collected data was subjected to statistical analysis using STATISTICA v. 10.0 system (StatSoft Inc., Tulsa, USA). Two tests were used for the analysis: Pearson’s χ² test, which assessed variable dependence in which the qualitative (not quantitative) data was taken into consideration, and the unilateral structure indicators significance test, which was used for comparing the amount and the percentage of a given option in order to determine if any of the indicated options occurs considerably more often than the others. The tests used in the analysis were non-parametric. Statistical significance was taken as p < 0.05.

Material and methods

This study was based on an analysis of the medical records of 262 patients treated at the Department of Maxillofacial Surgery of the Frederic Chopin Clinical Regional Hospital in Rzeszów over the period 2006–2015 for primary malignant cancers of the eyelid skin and periocular tissues. Demographic data, age, sex, size and location of lesions, histological types, and clinical staging were assessed. The collected data was subjected to statistical analysis using STATISTICA v. 10.0 system (StatSoft Inc., Tulsa, USA). Two tests were used for the analysis: Pearson’s χ² test, which assessed variable dependence in which the qualitative (not quantitative) data was taken into consideration, and the unilateral structure indicators significance test, which was used for comparing the amount and the percentage of a given option in order to determine if any of the indicated options occurs considerably more often than the others. The tests used in the analysis were non-parametric. Statistical significance was taken as p < 0.05.

Results

The results obtained from the conducted test material assessment are presented in the form of tables and descriptions. Between 2006 and 2015, a total of 2,062 patients were hospitalized at the department and treated on an outpatient basis for malignant head and neck skin cancers. This study solely concerns the 262 patients operated on due to malignant cancers of the eyelid skin and the periocular area on an inpatient basis, which constituted 12.7% of the total number of patients treated for malignant head and neck skin cancers. Table 1 shows the number of patients treated during particular years for skin cancers located in the periorbital area and demonstrates that in the last decade, annually 20–30 patients were treated for cancer located in this area. A slight increase in the number of patients with eyelid skin and periocular area cancer occurred year by year, yet at that time, this was not statistically significant p < 0.05.

Among the patients, there were 139 (53%) women and 123 (47%) men in the 11–94 age group. Data concerning the patients’ sex and age is presented in Table 2.

In the analyzed material, the majority, i.e., 62.9% of patients are over 60 years of age. Among the patients, there were 6 people (2.3%) under the age of 30 who were admitted to the hospital in order to excise minor skin lesions...
(<5 mm) of the benign lump type in cases where histopathological examination of the material suggested the presence of basal cell carcinoma. Over time, an increase in the number of patients with eyelid skin cancer was observed. The statistical analysis of the material did not confirm a statistically significant relationship between the increase in the number of patients treated in particular 10-year age brackets and their sex. The difference between the number of patients in subsequent age brackets and the previous age bracket was statistically insignificant. Patients were referred for surgical treatment mostly by dermatologists, ophthalmologists, oncologists, general practitioners, and maxillofacial surgeons.

Patients admitted to the Clinic did not report any complaints, including pain, in most cases. The reason for being referred for treatment were mostly non-healing skin ulcerations and periorcular tissue wounds, visual impairment caused by a growing tumor mass obscuring the field of vision, bleeding, and, rarely, aesthetic reasons.

In the case of 124 patients, who constituted 47.3% of patients, primary cancers were located in the area of the medial canthus of the eye, while in the case of 83 patients (31.7%) they concerned the lower eyelid. In 26 patients (9.9%), it was the upper eyelid, while in 29 patients (11.1%), lesions were located in the area of the lateral canthus of the eye.

The statistical analysis of the data shows that the occurrence of cancers in the area of the medial canthus of the eye was considerably more frequent than in the remaining areas, which was statistically confirmed (p < 0.05).

The sizes of lesions in several cases varied between less than 5 mm, found in 22 patients (8.4%), to more than 20 mm. Cancers ranging in size between 6 and 10 mm were treated most often (in 113 patients; 43.1%). Lesions between 11 and 15 mm were present in 40 patients (15.3%), whereas those between 16 and 20 mm occurred in 67 cases (25.5%). Lesions larger than 20 mm which spread into the surrounding tissues were found in 7 patients (2.8%). The statistical analysis shows that the differences in the frequency of eyelid primary cancers between 6 and 10 mm in size were statistically significant (p < 0.05) in comparison with the remaining eyelid and periorcular area cancerous lesion sizes.

On the basis of clinical examination and histopathological verification, BCCs were observed most frequently, namely, in 213 patients (81.4%), while SCCs were found in 38 patients (14.5%). In 8 cases, i.e., 3.0%, eyelid adenocarcinomas were present, whereas 3 patients (1.1%) were diagnosed with eyelid skin malignant melanomas. The occurrence of BCC cancer was 4 times higher than the remaining types of malignant periorcular area skin cancers.

An assessment of the patients with regard to the relationship between the type of malignant cancer and its location was conducted. Basal cell carcinomas were most frequently located in the medial canthus of the eye (in 102 patients; 47.9%), while in 68 cases (31.9%), it was found in the lower eyelid. The outbreak of BCCs in the upper eyelid affected 23 patients (10.8%), while 20 patients (9.4%) had it in the lateral canthus of the eye. Squamous cell carcinomas were also most often located in the medial canthus of the eye (in 17 patients; 44.7%), while in 11 patients (28.9%), it was located in the lower eyelid. Table 3 presents data regarding the relationship between the type of malignant cancer and its location with respect to the histopathological diagnosis, which shows that both BCCs and SCCs were mostly located in the medial canthus of the eye and concerned the lower eyelid.

The statistical analysis of the data regarding location shows that there are no statistically significant differences between the type of malignant cancer confirmed by histopathological examination and its location in periorcular tissues (p = 0.6134).

Over the period 2006–2015, a total of 213 patients were treated at the clinic for different types and forms of eyelid and periorcular area BCC. Data regarding the particular forms of BCC is presented in Table 4.

Table 3. Location and histopathological type of malignant cancer

<table>
<thead>
<tr>
<th>Location</th>
<th>SCCs</th>
<th>BCCs</th>
<th>Adenocarcinoma</th>
<th>Melanoma malignum</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower eyelid; n (%)</td>
<td>11 (28.9)</td>
<td>68 (31.9)</td>
<td>2 (25.0)</td>
<td>2 (66.7)</td>
<td>83 (31.7)</td>
</tr>
<tr>
<td>Upper eyelid; n (%)</td>
<td>2 (5.3)</td>
<td>23 (10.8)</td>
<td>1 (12.5)</td>
<td>0</td>
<td>26 (9.9)</td>
</tr>
<tr>
<td>Medial canthus; n (%)</td>
<td>17 (44.7)</td>
<td>102 (47.9)</td>
<td>4 (50)</td>
<td>1 (33.1)</td>
<td>124 (47.3)</td>
</tr>
<tr>
<td>Lateral canthus; n (%)</td>
<td>8 (21.1)</td>
<td>20 (9.4)</td>
<td>1 (12.5)</td>
<td>0</td>
<td>29 (11.1)</td>
</tr>
<tr>
<td>Total; n (%)</td>
<td>38 (100)</td>
<td>213 (100)</td>
<td>8 (100)</td>
<td>3 (100)</td>
<td>262 (100)</td>
</tr>
<tr>
<td>p-value</td>
<td>$\chi^2(9) = 7.23; p = 0.6134$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCCs – squamous cell carcinomas; BCCs – basal cell carcinomas.

Table 4. Occurrence of particular BCC forms in the group of treated patients

<table>
<thead>
<tr>
<th>Number</th>
<th>Morphological types of BCCs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nodular</td>
</tr>
<tr>
<td>213</td>
<td>90 (42.2%)</td>
</tr>
</tbody>
</table>

BCCs – basal cell carcinomas.
Table 5. Type of BCCs depending on location

<table>
<thead>
<tr>
<th>Location</th>
<th>Morphological types of BCCs</th>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nodular</td>
<td>ulcerative</td>
<td>cystic</td>
<td>cicatricial</td>
<td>pigmented</td>
<td></td>
</tr>
<tr>
<td>Lower eyelid</td>
<td>23 (33.8)</td>
<td>18 (26.5)</td>
<td>18 (26.5)</td>
<td>7 (10.3)</td>
<td>2 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Upper eyelid</td>
<td>11 (47.8)</td>
<td>3 (13.0)</td>
<td>7 (30.4)</td>
<td>2 (8.7)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Medial canthus</td>
<td>51 (50)</td>
<td>0</td>
<td>46 (45.1)</td>
<td>3 (2.9)</td>
<td>2 (2.0)</td>
<td></td>
</tr>
<tr>
<td>Lateral canthus</td>
<td>5 (25.0)</td>
<td>0</td>
<td>10 (50.0)</td>
<td>1 (5.0)</td>
<td>4 (20.0)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>90 (42.3)</td>
<td>21 (9.9)</td>
<td>81 (38.0)</td>
<td>13 (6.1)</td>
<td>8 (3.8)</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ²(12) = 60.13; p = 0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BCCs – basal cell carcinomas.

Most often, in a total of 90 patients (42.2%), the nodular form of BCC was diagnosed, while there were 81 cases (38.0%) with the cystic form of BCC. The pigmented form of BCC found in 3.9% of patients was the least frequently represented. The primary cancers of BCC in an ulcerative form were present in 21 patients (9.8%), while 13 patients (6.1%) suffered from the cicatricial type of BCC. The frequency of occurrence of the nodular and cystic forms in the analyzed material was similar. There were no statistically significant differences between the occurrence of these 2 forms (p = 0.2880). The nodular and cystic forms occurred statistically more frequently than the remaining variants of BCC. With respect to the further ulcerative form, in terms of occurrence, the difference was statistically significant for both the nodular type (p = 0.0027) and the cystic type (p = 0.0069). The statistical analysis shows that the nodular and cystic forms of BCC occurred considerably more frequently in the periocular area than did the remaining variants of BCC.

A detailed assessment of the particular morphological forms of BCC shows that the lower eyelid was the location of mainly nodular and cystic lesions which, together with the cicatricial forms, accounted for more than 80% of cases. The lesions located in the upper eyelid were the most common nodular variations (in 47.8% of cases). In the medial canthus of the eye area, the nodular form also occurred most frequently (in 51 patients), while the cystic form was diagnosed in 46 patients (45.1%). The cicatricial and the pigmented forms were mostly located in the lateral canthus area of the eye. The material presented indicates that the differences in the occurrence of the types and forms of BCC cancer were significantly related to their location (p = 0.0000). The abovementioned data is presented in Table 5.

Over the period 2006–2015, 38 patients with SCCs of the periocular area skin were treated. The degree of pathological differentiation according to the Broder’s scale regarding the percentage of mature, differentiated cells and atypical cells is shown in Table 6. Most frequently, in 19 patients, forms of well-differentiated cancer cells (G2) were observed; 13 patients (34.9%) were diagnosed with cancer of type G2 (moderately differentiated) and 6 patients (15.8%) had a poorly differentiated type of cancer (G3). There were no anaplastic SCCs (type G4) in the discussed material.

The statistical analysis demonstrates that differences in the occurrence of particular stages of histologically mature SCCs located in the periocular area were not statistically significant (p >0.05).

On the basis of the simplified TNM classification (feature T), developed by the Union of International Cancer Control (UICC), the clinical staging of eyelid skin cancer was assessed. In the analyzed group, the most frequent were outbreaks of cancer in stage T2M0N0 (43.1%). Tumors in stage T3M0N0 were operated on in 40.8% of patients. Stage T4M0N0 was treated in 35 patients (13.3%). The analysis confirmed that the differences in the occurrence of eyelid skin cancers in clinical stages ranging from T1 to T4, T1 and T3, T1 and T2, T2 and T3 and T2 were statistically significant. A detailed overview of the clinical staging of eyelid cancers is included in Table 7.

It seemed of interest whether there is a relationship between the clinical staging of malignant skins cancers (TNM) and their location in the periocular area. In the analyzed group of patients, the malignant cancers located in the medial canthus area of the eye were the most frequently operated on (in the cases of 124 patients [47.3%]). They were mostly in the T2 and T3 clinical stages. In this location, there were also 3 patients in the T4 stage who required a wide-margin excision of tissues surrounding the cancer. Detailed data regarding the relationship between

Table 6. Broder's eyelid SCC differentiation stages

<table>
<thead>
<tr>
<th>Number</th>
<th>G1 (%)</th>
<th>G2 (%)</th>
<th>G3 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 (100.0%)</td>
<td>19 (50.0%)</td>
<td>13 (34.2%)</td>
<td>6 (15.8%)</td>
</tr>
<tr>
<td>p-value</td>
<td>pG1–G2 >0.05; pG1–G3 >0.05; pG2–G3 >0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCCs – squamous cell carcinomas.

Table 7. Clinical staging of eyelid cancers according to the TNM classification

<table>
<thead>
<tr>
<th>Number</th>
<th>T1M0N0</th>
<th>T1M1N0</th>
<th>T1M2N0</th>
<th>T2M0N0</th>
<th>T2M1N0</th>
<th>T2M2N0</th>
<th>T3M0N0</th>
<th>T3M1N0</th>
<th>T4M0N0</th>
</tr>
</thead>
<tbody>
<tr>
<td>262 (100%)</td>
<td>35 (3.7%)</td>
<td>113 (43.1%)</td>
<td>107 (40.8%)</td>
<td>7 (2.8%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>pT1–T2 <0.05; pT1–T3 <0.05; pT1–T4 <0.05; pT2–T3 <0.05; pT2–T4 >0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the clinical staging and the location of the cancers is shown in Table 8.

The differences in the occurrence of the particular clinical stages of cancers and their location were not statistically significant (p > 0.05).

Discussion

In the analyzed group of patients operated on at the Department of Maxillofacial Surgery of the Frederic Chopin Clinical Regional Hospital in Rzeszów, the dominant group were patients aged over 60 years, which is in accordance with the epidemiological data published by other authors and regarding not only primary cancers, but also the recurrence of facial skin malignant cancers.13,14

The most frequently histologically diagnosed eyelid skin cancer in the examined group was BCC, which occurred in 81.4% of patients. A similar frequency of occurrence was noted by Spiteri and McCormick, as well as Allali et al.15 Among the excised BCCs, the most often diagnosed form were the nodular and cystic variations, which were found in 38.0% of patients. This was confirmed by statistical analysis. Similar results were obtained by Ben Simon et al.8,14

The nodular and cystic types of BCC occurred considerably more often in the medial canthus area of the eye in comparison to the remaining periorcular areas. The location was the medial canthus of the eye in the examined group in 47.3% of the overall number of periorcular area tumors operated on. The results of these examinations are compliant with the observations published by Iljin et al.8,10

An analysis of our own material shows that the largest group were the cancers with diameters ranging from 10 to 20 mm and classified as T1 or T2 according to the UICC classification. This may result from the characteristics of the patients who qualified for surgical treatment at the Department. They were patients aged over 60 years, mostly afflicted with ailments and diseases of other systems. Minor lesions are mostly operated on at dermatological, laryngological and general surgery clinics. Histopathological verification of the excised eyelid tumors allowed for a diagnosis of SCC in 38 patients (14.5%) with dominant, well-differentiated G1 cancer constituting 50% of histological diagnoses. There was no statistically significant correlation between the clinical stage of the SCC and the location of the tumor. The results obtained from these observations correspond with the publication published by Nemet’s and Donaldson’s teams.8,10 On the basis of the retrospectively studied characteristics of the treated patients, the following conclusions are presented.

Conclusions

Between 2006 and 2015, 262 patients were treated for periocular area skin cancers at the Department of Maxillofacial Surgery of the Frederic Chopin Clinical Regional Hospital in Rzeszów. They represent 12.7% of all patients hospitalized due to head and neck skin cancers at that time.

The most represented group (45.3%) was that of patients aged between 60 and 70 years.

Primary cancers were mostly located in the medial canthus of the eye (47.3%) and in the lower eyelid (31.7%). In 81.4% of treated patients, BCCs of mainly nodular and cystic types were diagnosed, while 14.5% of patients had SCCs. The majority of the treated patients were diagnosed with cancer outbreaks in the T1 (16–20 mm) and T2 (6–10 mm) clinical stages.

References

