The Dry Form of Age-Related Macular Degeneration (AMD): The Current Concepts of Pathogenesis and Prospects for Treatment

Abstract
Age-related macular degeneration (AMD) is a disease that causes varying degrees of blindness, which affects millions of adults in their later years. Preliminary changes occur during normal aging, but in some individuals the pathology leads to the development of AMD. The pathology seems to be a mixture of biochemical, cellular, and molecular events. Lipofuscinogenesis and early drusen genesis are in the early stages of AMD and their inhibition or reversal would dramatically increase the quality of vision in elderly people. The disease is characterized by abnormal extracellular deposits, known as drusen, which accumulate along the basal surface of the retinal pigment epithelium RPE. Widespread drusen deposition is associated with retinal pigmented epithelial cell dysfunction and degeneration of the photoreceptors. Recent studies have shown that drusen contain a variety of immunomodulatory molecules, suggesting that the process of drusen formation involves local inflammatory events, including activation of the complement cascade. Molecular pathways involved in the etiology of this disease and the potential prospects of its treatment will be presented on the basis of the results of the current studies (Adv Clin Exp Med 2015, 24, 6, 1099–1104).

Key words: dry AMD pathogenesis, dry AMD treatment, dry AMD prophylaxis.

The Current Concepts of Pathogenesis
AMD is the main cause of vision loss in developed countries. Typical symptoms in the late stages of the disease include decreased night vision and progressive loss of central vision. Due to prolonged life expectancy in modern societies AMD constitutes a severe medical and socio-economic problem. There are two AMD forms: dry (in 90% of patients) and wet (in 10% of patients).

In the wet form the cause of potential central vision drop is a subchoroidal neovascularization. An inflammatory reaction initiates a pathological angiogenesis. Pathological neovascularization penetrates through the defects in the Bruch membrane and the RPE layer to the subretinal space, where exudation and bleeding destroy photoreceptors. Commonly used anti-VEGF factors given in repeated intravitreal injections inhibit neovascularization and can stabilize vision acuity in some patients.

In the dry form of AMD the slow apoptosis of RPE, neuroretina and choriocapillaris develops and causes permanent central vision loss. At present, there is no effective treatment of the latter form. The etiology of the disease is also unknown.

The development of the disease is connected with the coexistence of a combination of environmental and genetic factors as well as numerous metabolic and functional anomalies typical of the anatomic-functional complex involving photoreceptors, RPE-cells, Bruch membrane and choriocapillaries.
Smoking is associated with a twofold increased risk of developing AMD [1, 2].

The Bruch’s membrane exhibits increased deposition of cholesterol and calcium with age. In the course of the disease the alternative complement path is activated (which might be due to genetic factors) by lipofuscin constituents as a response to the inflammatory process connected with drusen genesis [3].

Lipofuscin collects in RPE cells in the form of insoluble deposits called old age spots.

Lipofuscin is made up of membrane phospholipids, membrane proteins, visual cycle proteins, lipid-protein complexes and retinoids resulting from incomplete enzymatic degradation in phagolysosomes. Phospholipids of plasmatic membranes contain a lot of docosahexaenoic acid DHA, multisaturated Omega-3 type lipid acid. When eyes are exposed to sunlight, in an environment rich in oxygen, DHA combines with phosphatidyloethanolamine PE (DHA-PA) and phosphatidylocholine PC (DHA-PC) and by peroxidation splits into 7 carbolic fragments called HOHA, which when combined with protein make up carboxyethylpyrrole-protein adducts (CEPs). The role of CEP in the inflammatory process connected with AMD has been confirmed. It is also suggested that CEP may initiate neovascularization in the wet form of the disease [4, 5].

Malondialdehyde (MDA) is another molecule which plays a role in AMD progression. Complement factor H binds MDA and can block MDA-induced proinflammatory effects [6].

Due to the impaired autophagy (an essential lysosomal pathway that degrades cytoplasmic proteins and damaged organelles) the stressed RPE releases exosomes that are coated with complement and can bind CFH. This may be a mechanism for sub-RPE deposit formation [7–9].

Drusen genesis is a sign of AMD progression. Drusen are amorphous extracellular deposits in the space between RPE and Bruch membrane. Drusen may be of various sizes (30–50 µm or larger when confluent) and of various compositions. Their occurrence signals the degree of advancement of the disease. The chemical analysis of drusen has indicated traces of RPE cells.

Other materials can be trapped in the drusen as they pass through them in transit between the RPE and choriocapillaris.

Drusen consists of 2 completely different focal types: The first consists of a focal thickening of the RPE basement membrane and the drusen are nodular meaning ‘hard’ or ‘discrete. In fluorescein angiography FA, they cause early hyperfluorescence and late staining. It is unclear if they represent a high risk factor for the development of dry AMD. Histologically nodular drusen have an eosinophilic, PAS-positive appearance and are located externally or contiguously or replace the thin basement membrane of the RPE. Nodular drusen may become calcified, lipidized, cholesterolized or rarely vascularized (Fig. 1 – reprinted from Ocular Pathology, Elsevier, 2009). The second is a limited separation of the normal basement membrane of the RPE from its attachment to Bruch’s membrane at the inner collagenous zone by a wide variety of materials, whose consistency differs from bone to fluid. In FA they show staining; sometimes they are hypofluorescent due to lipid accumulation (Fig. 2 – reprinted from Ocular Pathology, Elsevier, 2009).

In the dry form of AMD, geographic atrophy (GA) develops after the progression of the disease going from a stage of large, confluent drusen to hyperpigmentation and finally drusen regression. In 25% of cases highly refractile deposits precede GA.

In the course of the disease the neural retina can show microcystoid or macrocystoid (retinoschisis) degeneration. Eventually, hole formation may occur in the inner wall of the macrocyst. A total hole rarely develops with rounded, smooth edges.

Sometimes large, coalescent drusen form pigment epithelial detachments (PEDs). It can be stable over time with an associated slight decrease of visual acuity or progression quicker in volume and area before CNV develops.

Deposits located above the RPE are called reticular pseudodrusen or drusenoid subretinal deposits.

They do not fluoresce with fluorescein or indocyanine green in angiography.

Pseudodrusen can also precede GA as a result of the derangement of the retinal pigment epithelium by the underlying atrophy and fibrosis of the choroid.

In AREDS1 Study GA development led to visual acuity (VA) loss from 3.7 letters at first GA documentation and to 22 letters after 5 years.

Gene Testing Rationale in AMD

AMD is a complex genetic disorder. Gene CFH localized in chromosome 1 in a human being, which encodes Factor H participates in the complement system regulation. The mutation changing tyrosine into histidine in locus 402 of the gene coding this factor (Y 402H) causes chronic inflammatory reaction due to hyperactivity of the alternative complement pathway. Mutations of CFB, C2, and C3 also contribute to this hyperactivity
or to membrane attack complexes. Genes ARMS2, HTRA1 and PLEKHA1 are localized in chromosome 10q26. This location is directly connected with the disease. The above genes code proteins whose expression takes place in the RPE cells. The presence of these proteins in drusen is also suggested.

Other genes could intervene in the high-density lipoprotein (HDL) cholesterol pathway (LIPC, A ABCA1 and CETP); in the extracellular matrix pathway (TIMP3, COL10A1 and COL8A1) and angiogenesis pathway (VEGFA).

Genetic studies should be an integral part of clinical studies of AMD, but due to the lack of specific efficacious preventive treatments, routine genotyping of AMD patients is not needed yet [10].

The combination of metabolic data, e.g. carboxymethyllysine (CML), pentosidine and carboxyethylpyrrole (CEP) and genotype data may help to improve the identification of clinically-relevant biomarkers for AMD.

The correlations between genotype and its response to anti-VEGF treatment are inconsistent on the base of present scientific studies results.
The Prospects for Treatments of AMD

At present, management of AMD involves mainly prophylactic supplementation and potential inhibition of the disease progression.

The Age Related Eye Disease Study (AREDS), a multicenter, randomized, controlled clinical trial showed that oral supplementation of a combination of vitamin C (500 mg), vitamin E (400 UI), beta-carotene (15 mg), zinc oxide (80 mg) and cupric oxide (2 mg) in patients with intermediate or advanced AMD in one eye had a 25% less chance of developing advanced AMD in the other eye over the next 5 years [11].

Long chain omega-3 fatty acids supplementation may also help to prevent oxidative, inflammatory AMD retinal damage. In the ALIENOR Study an inverse relation between late stages of AMD and plasma omega-3PUFA was observed [12–16].

Statins do not reduce the risk of AMD. Zeaxanthin and lutein, two macular carotenoid pigments, are believed to prevent lipofuscin photooxidation and thus they may play a protective and preventive role in AMD [17–19].

The results of the present published scientific data are not sufficient to recommend routine nutritional supplementation for primary prevention of AMD, but patients with intermediate or advanced risk in one eye are recommended to take AREDS type supplements for slowing the progression of AMD in the other eye.

Hyperhomocysteinemia is responsible for vascular damage and is also an AMD risk factor.

Vitamin B12 and folate reduce blood homocysteine concentration and according to the WA-FACS Study can reduce the risk of developing AMD by 35–40%.

In some epidemiologic studies the protection role of vitamin D is suggested due to its rejuvenating action in aging eyes by reducing inflammation and clearing amyloid β. Therefore, hypovitaminosis D in the elderly should be taken into account as being a potential AMD risk factor [20–23].

Current research suggests that the analysis of lipid profile in Bruch membrane is indispensable with regards to identifying the pathology progressing with age and then establishing early diagnostic and treatment procedures [24, 25].

RPE secretes apolipoprotein B-lipoprotein, which cumulates in drusen and eventually forms a lipid wall, a precursor of basal laminar deposit. Constituents of these eye lesions react with reactive oxygen species and form pro-inflammatory peroxidised lipids which elicit neovascularization.

On the other hand, the transport across human Bruch’s membrane is due to protein carriers which diminishes with age, but could be enhanced by ginseng compounds [26].

Fig. 2. Large (“soft”) drusen. A) Clinical appearance of large drusen scattered in the posterior pole. B) An amorphous material is present between retinal pigment epithelium and Bruch’s membrane. Note presence of tiny blood vessels in material. C) Brushlike appearance helps identify the basal laminar deposit (C, Courtesy of Dr. RC Eagle, Jr.)
During the process of aging, amyloid β accumulates in different tissues: in senile plaques of the Alzheimer’s disease brain and in drusen of AMD patients [27–29].

T helpers 2 reveal activity against amyloid – the potential vaccine could reduce amyloid β accumulation.

Synthetic apolipoprotein mimetics can regulate lipid transport within the bloodstream and can even remove lipid accumulation in vessel walls. Intravitreal apolipoprotein A-I mimetic peptide D-4F injection in an animal model of AMD reduced the lipid deposition and the thickness of Bruch membrane. This strongly points towards the possibility of the future prophylactic AMD treatment in the human eye [30].

There is a hope of an effective neuroprotective therapy in dry AMD treatment by the use of a drug which could block cell death signals and enhance cell survival signaling.

Currently, different drugs are being tested in patients with dry AMD:

1) ciliary neurotrophic factor CNTF,
2) brimonidine Brimo PS DDS,
3) fluocinolone acetonide ILUVIEN,
4) 4-hydroxy (phenyl) retinamide FENRETINIDE,
5) Comstatin derivate PDT-4 (targets reversibly C3-a point of convergence for all three pathways of complement activation),
6) Eculizumab – humanized monoclonal antibody specifically C5 binding.

Modulation of the recruitment of microglia (resident immune cells in the central nervous system CNS and retina) and macrophages to the site of injured RPEs is also a potential target for AMD treatment.

Polymorphisms in the CX3CR1 chemokine receptor found on microglia and macrophages have been associated with increased risk of AMD [31, 32].

Another way to preserve vision in AMD could be embryonic cell transplantation. We still await the results of studies being carried out on human eyes with RPE cells injected to rescue photoreceptors and stop the progression of macular degeneration.

The immunogenicity, stability of the cells and the propensity to form tumors still limit the practical use of RPE replacement therapy [33].

References

Address for correspondence:
Hanna M. Zając-Pytrus
Ophthalmological Department
Wroclaw Medical University
Borowska 213
50-556 Wroclaw
Poland
Tel.: +48 501 477 764
E-mail: hzp@spektrum.wroc.pl

Conflict of interest: None declared

Received: 27.05.2014
Revised: 30.06.2015
Accepted: 16.07.2014