Çiğdem Y. Güçlü, Süheyla Ünver, Bahar Aydınli, Dilek Kazancı, Elif Dilber, Ayşegül Özgök

The Effect of Sevoflurane vs. TIVA on Cerebral Oxygen Saturation During Cardiopulmonary Bypass – Randomized Trial

Türkiye Yüksek İhtisas Education and Research Hospital, Clinic of Anesthesia and Reanimation, Ankara, Turkey

A – research concept and design; B – collection and/or assembly of data; C – data analysis and interpretation; D – writing the article; E – critical revision of the article; F – final approval of article; G – other

Abstract

Background. Neuropsychological and neurological deficits are still major causes of mortality and morbidity after cardiac surgery. These complications are thought to be caused by embolisms and cerebral hypoxia. Thus, continuous neuromonitoring is essential during cardiac surgery due to cerebral oxygen desaturation during different periods. Near-infrared spectrophotometry (NIRS), a non-invasive method, appears to offer many advantages for monitoring cerebral oxygenation and hemodynamics. Desaturation of cerebral oxygen may occur at the beginning of cardiopulmonary bypass (CPB) or during the low perfusion and rewarming stages if not corrected.

Objectives. This study was designed to assess the effects of sevoflurane on cerebral protection during CPB.

Material and Methods. Eighty patients were divided into two groups. Anesthesia was maintained either with fentanyl and midazolam (total intravenous anesthesia, TIVA) or with one minimum alveolar concentration of sevoflurane and fentanyl. Cerebral desaturation was defined as an absolute decrease in saturation of 20% from baseline cerebral saturation. When desaturation occurred, PaCO₂, hematocrit and PaO₂ levels were checked and corrected. If desaturation continued, anesthetic depth was increased to reserve saturation with 50–100 mg of propofol. NIRS values and hemodynamics were recorded at predetermined time intervals.

Results. Cerebral oxygen saturation values on the right side were higher in the sevoflurane group than in the TIVA group. The values on the left side were higher in the sevoflurane group than in the TIVA group, and meaningful differences were seen at the lowest temperature and at 36°C.

Conclusions. Oxygen saturation was higher in the sevoflurane group than in the TIVA group. Thus, the effect of sevoflurane was useful for maintaining cerebral oxygen saturation during CPB (Adv Clin Exp Med 2014, 23, 6, 919–924).

Key words: near-infrared spectrophotometry, cerebral oxygen saturation, cardiopulmonary bypass, sevoflurane.
minimum alveolar concentration (MAC) of sevo-
flurane anesthesia causes a decrease in global ce-
rebral blood flow because of a pronounced reduc-
tion in CMRO₂ [13]. Opioids and benzodiazepines
also decrease CMRO₂, but not as much as volatile
agents. Sevoflurane has a direct dose-dependent
cerebral vasodilatory effect as well [14]. This study
was designed to compare the effects of sevoflurane
and total intravenous anesthesia (TIVA) on cere-
bral cortex oxygen saturation during CPB.

Material and Methods

Following approval by the local ethics and re-
search committee and the receipt of written in-
formed consent, 80 patients undergoing elective
cardiac bypass surgery were included in the study.
Exclusion criteria included a history of any neuro-
logical disease or neurosurgery, any carotid artery
stenosis, left ventricular ejection fraction < 40%,
re-operation and the need for concomitant valve
surgery.

All the patients were premedicated with
0.1 mg/kg morphine administered intramuscu-
larly 1 h before surgery. A randomization enve-
lope was opened in the operating room, and pa-
tients were assigned to either the active treatment
group or the control group. Standard monitoring
was applied, including five-lead electrocardiogra-
phy, digital pulse oximetry, capnography, radial
arterial line and a triple-lumen catheter via the in-
ternal jugular vein.

Regional cerebral oxygen saturation was mon-
itored using near-infrared spectroscopy (NIRS)
(INVOS 3100; Somanetics, Troy, MI, USA). NIRS
technology is based on the principle that all sub-
stances have a characteristic absorbance. The light
source of the oximeter provides 2 continuous wave-
lengths of near-infrared light (730 and 810 nm) on
the forehead, in the area corresponding to the junc-
tion between the anterior and middle cerebral ar-
teries. Two detectors with a source detector spaced
3 and 4 cm apart distinguished the extra-cerebral
tissue signals from the intra-cerebral tissue signals.
The ratio of oxygenated hemoglobin to total he-
moglobin was calculated using the unpaired t-test.
 means were compared
adjusted to maintain partial carbon dioxide pres-
sure (PaCO₂) at 35–45 mm Hg, as confirmed by se-
rial arterial blood gas analysis. After the induction
of anesthesia, a central catheter, a urinary catheter
and a rectal temperature probe were placed. Intra-
venous fluids were administered according to the
estimated insensible loss of 7 mL/kg/h during sur-
gery and titrated according to the blood pressure
and central venous pressure. A decrease in mean
arterial pressure to < 60 mm Hg was treated with
fluids in the presence of low central venous pres-
sure or by use of vasopressors. If the hematocrit val-
ue was < 20%, a red blood cell transfusion was ad-
ministered. When PaCO₂ was < 35 mm Hg during
ventilation, ventilation was reduced to achieve Pa-
CO₂ > 40 mm Hg. pH-stat management was used
during CPB. CPB was instituted and maintained
according to the standard protocol with standard-
ized cannulation sites, pump flow, blood gas man-
agement, mean arterial pressure and temperature
targets. Blood cardioplegia was used in all the pa-
tients. Pump flow was adjusted to obtain an ad-
justed output of 2.2 L/m² body surface area. Pump
flow was reduced to 0.5 L/m² for aortic clamping
and unclamping. The pumps for all the patients
were roller pumps (Jostra, Hirrlingen, Germany)
and oxygenators (Dideco, Mirandola, Italy).

Cerebral desaturation was defined as a nega-
tive change from the baseline cerebral saturation. If
continued desaturation was observed, the patient’s
head position was checked to ensure that it had not
been rotated. Anesthetic depth was increased with
50–100 mg of propofol after checking and correct-
ing the PaCO₂, hematocrit and PaO₂ levels.

Arterial blood gas samples were collected and
NIRS values were recorded at various time inter-
vals: baseline, intubation, after internal mamma-
ry artery dissection, after cross-clamping, at 34°C,
at 32°C (lowest temperature), during warming at
36°C, post-bypass and after skin closure.

The data analysis was performed using Statis-
tical Package for Social Sciences software (v. 11.5,
SPSS Inc., Chicago, IL, USA). The Shapiro-
-Wilk test was used to check the normality of the
continuous variable distributions. The data are ex-
pressed as mean ± standard deviation or median
(range), where applicable. Means were compared
using the unpaired t-test. The Mann–Whitney
U test was used to compare median values. Re-
peated-measures analysis of variance was used to
evaluate both hemodynamic and clinical measure-
ments. The Bonferroni adjusted multiple compar-
ison test was applied as a follow-up for statistically
significant variance analyses. Nominal data were
analyzed using Pearson’s χ² or Fisher’s exact test,
where appropriate. Values of p < 0.05 were con-
sidered significant.
Results

The patient demographic data are shown in Table 1.

The changes in mean arterial pressure by time interval were similar (p = 0.185). No difference was detected in mean arterial pressure between the groups during any period (p = 0.477) (Fig. 1).

The changes in hematocrit level relative to the time interval were similar in the 2 groups (p = 0.153) (Fig. 2). There were no differences in oxygen saturation (SpO\textsubscript{2}), PaCO\textsubscript{2}, glucose or pH between the groups (p = 0.829, 0.738, 0.150 and 0.837, respectively).

Cerebral oxygen saturation (SRO\textsubscript{2}) values on the right side were higher in the sevoflurane group (Fig. 3). (* indicates a statistically significant difference)

![Fig. 1. Mean arterial pressure change during various time intervals (B – basal, I – intubation, IMA – internal mammarian artery dissection, CC – after cross-clamping, at 34°C, LT – last temperature, PSTB – post-bypass, S – skin closure)](image1)

![Fig. 2. Hematocrit (HTC) values during follow-up time periods (B – basal, I – intubation, IMA – internal mammarian artery dissection, CC – after cross-clamping, at 34°C, LT – last temperature, PSTB – post-bypass, S – skin closure)](image2)

![Fig. 3. Right SRO\textsubscript{2} values during follow-up time periods (B – basal, I – intubation, IMA – internal mammarian artery dissection, CC – after cross-clamping, at 34°C, LT – last temperature, PSTB – post-bypass, S – skin closure) (*) indicates a statistically significant difference)](image3)

<table>
<thead>
<tr>
<th>Table 1. Demographic variables</th>
<th>Sevoflurane</th>
<th>TIVA</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male/female</td>
<td>15/1</td>
<td>15/6</td>
<td>0.113</td>
</tr>
<tr>
<td>Age (years)</td>
<td>57.37 ± 9.8</td>
<td>57.33 ± 7.2</td>
<td>0.988</td>
</tr>
<tr>
<td>CPB time (min)</td>
<td>86.3 ± 20.2</td>
<td>90.0 ± 26.0</td>
<td>0.650</td>
</tr>
<tr>
<td>Cross-clamp time (min)</td>
<td>55.9 ± 14.3</td>
<td>58.6 ± 18.7</td>
<td>0.690</td>
</tr>
<tr>
<td>Other coexisting disease</td>
<td>4/16</td>
<td>5/21</td>
<td>1.0</td>
</tr>
</tbody>
</table>
than in the TIVA group, but the only significant difference was determined at lowest temperature (p = 0.012). The values on the left side were also higher in the sevoflurane group than in the TIVA group, and significant differences were seen at cross clamping, at the lowest temperature and at 36°C (p = 0.03, 0.02 and 0.03, respectively) (Table 2, Figs 3 and 4).

The change in SRO₂ on the right side compared with the baseline value, which is termed rO₂, was less in the sevoflurane group than in the TIVA group, with a significant difference at the lowest temperature (p = 0.03, 0.02 and 0.03, respectively) (Table 2, Figs 3 and 4).

Table 2. SrO₂ values according to measurement times. The values are presented as mean ± SD

<table>
<thead>
<tr>
<th></th>
<th>Right SrO₂</th>
<th>Left SrO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SEVO</td>
<td>TIVA</td>
</tr>
<tr>
<td>B</td>
<td>64.5 ± 7.1</td>
<td>66.5 ± 7.9</td>
</tr>
<tr>
<td>E</td>
<td>71.4 ± 7.8</td>
<td>71.7 ± 9.6</td>
</tr>
<tr>
<td>IMA</td>
<td>61.6 ± 7.6</td>
<td>64 ± 7.8</td>
</tr>
<tr>
<td>CC</td>
<td>59.8 ± 9.2</td>
<td>58.9 ± 8.6</td>
</tr>
<tr>
<td>34°C</td>
<td>59.2 ± 7.8</td>
<td>54.5 ± 11.4</td>
</tr>
<tr>
<td>LT</td>
<td>56.3 ± 9</td>
<td>48.7 ± 7.6</td>
</tr>
<tr>
<td>36°C</td>
<td>58.7 ± 8.9</td>
<td>56.8 ± 6.3</td>
</tr>
<tr>
<td>PSTB</td>
<td>62.5 ± 10</td>
<td>61 ± 6.6</td>
</tr>
<tr>
<td>S</td>
<td>64.4 ± 11</td>
<td>60.4 ± 8.7</td>
</tr>
</tbody>
</table>

temperature. On the left side, rO₂ differed significantly at the cross clamp and lowest temperature time intervals (Fig. 5 and 6).

The extubation and intensive care times were similar in both groups (p = 0.212 and 0.296).

Discussion

This study was designed to compare the effects of sevoflurane and TIVA on cerebral oxygen saturation in patients undergoing elective cardiac surgery. The success of cardiac surgery is related to the neurological outcome of the patients, which can be adversely affected by cerebral oxygen desaturation [9–11, 15]. During CPB, cerebral oxygen desaturation occurs at different time points, such as the beginning of bypass due to hemodilution, during low perfusion and during rewarming. Correcting the cause of desaturation is an important issue in anesthetic management, and preserving cerebral oxygen saturation is a major concern in cardiac surgery.

Many factors, including PaCO₂, pH and temperature, have been used to explain cerebral oxygen desaturation during cardiac surgery, and inflammatory activation has been reported as a main effect of CPB [16–19]. In this study, only the effect of sevoflurane on cerebral oxygen saturation was assessed, and no other regulatory parameters.

Hemodilution at the start of CPB causes a decline in regional cerebral oxygen saturation. Other critical times for desaturation are the low perfusion and early rewarming stages [20]. Cerebral cortical oxygen saturation reflects the dynamic balance between cerebral oxygen supply and consumption. When body temperature drops, the cerebral metabolic rate and oxygen consumption decrease, but the cerebral oxygen supply does not change significantly because the amount of arterial blood transported from the artificial pump to the aorta is steady. Thus, saturation can decrease during the initial part of the CPB procedure as well as the rewarming stage [16, 21].

In the current study desaturation was noted at the onset of CPB, which might have been due to blood-free prime-induced hemodilution. According to the study findings, sevoflurane preserved cerebral oxygen saturation better than the fentanyl and midazolam combination, as saturation was higher in the sevoflurane group.

The effect of CPB temperature on the neurological outcome remains controversial. Regragui et al. reported a worse neurological outcome of normothermic bypass (37°C) compared with that of moderately hypothermic (32°C) perfusion [22]. Similar results were reported by Martin et al. [23]. In the present study, a moderately hypothermic bypass was used.

Piquette et al. administered intravenous nitroglycerin to prevent the decrease in NIRS associated with CPB during high-risk cardiac surgery and reported that nitroglycerin may also prevent a decrease in NIRS [24]. Although there are some conflicting results regarding NIRS and outcomes, NIRS monitoring is an easy, non-invasive and helpful technique for detecting cerebral oxygen saturation during cardiac surgery [25, 26].

The difference in oxygen saturation between the right and left sides was a confusing result of the present study. False-negative factors (e.g., skin, hair follicles, forehead shape, and A-V anatomic shunts) might have been responsible for the difference.

The results of this study indicate that the use of sevoflurane during CPB maintained cerebral oxygen saturation. Sevoflurane has a direct cerebral vasodilatory effect and plays a role in brain protection by reducing CMRO₂ [14]. Although there was desaturation in some patients, cerebral oxygen saturation was better in the sevoflurane group than in the TIVA group.

Several limitations of this study must be considered. Cerebral oximetry was not monitored in the critical care unit, and neuropsychological tests must be used after surgery to identify neurological outcomes, as mentioned in other studies.

The present study demonstrated that cerebral oxygen saturation was higher in the sevoflurane group than in the TIVA group. This effect may be useful for preventing desaturation during perfusion, but more studies are needed to verify these results.

References

Address for correspondence:
Çiğdem Y. Güçlü
Sancak Mah. 525 st. 15/7 Yıldız
Ankara
Turkey
Tel.: +90 532 457 66 48
E-mail: drcigdemylmrd@yahoo.com.tr

Conflict of interest: None declared

Received: 4.08.2013
Revised: 3.06.2014
Accepted: 15.10.2014