Advances in Clinical and Experimental Medicine

Adv Clin Exp Med
Impact Factor (IF) – 1.227
Index Copernicus (ICV 2018) – 157.72, MNiSW – 40
Average rejection rate – 84.38%
ISSN 1899–5276 (print),   ISSN 2451-2680 (online)
Periodicity – monthly

Download PDF

Advances in Clinical and Experimental Medicine

2019, vol. 28, nr 8, August, p. 1027–1036

doi: 10.17219/acem/98952

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

The relationships between glycemic index and glycemic load of diets and nutritional status and antioxidant/oxidant status in the serum of patients with lung cancer

Katarzyna Agnieszka Zabłocka-Słowińska1,A,B,C,D,F, Katarzyna Skórska1,A,B,C,D,F, Sylwia Płaczkowska2,B,C,E, Anna Prescha1,B, Konrad Pawełczyk3,B,E, Monika Kosacka4,B,E, Irena Porębska4,B,E, Halina Grajeta1,E,F

1 Department of Food Science and Nutrition, Wroclaw Medical University, Poland

2 Diagnostics Laboratory for Teaching and Research, Wroclaw Medical University, Poland

3 Department and Clinic of Thoracic Surgery, Wroclaw Medical University, Poland

4 Department and Clinic of Pulmonology and Lung Cancers, Wroclaw Medical University, Poland

Abstract

Background. A low glycemic index (GI) and glycemic load (GL) of diets as well as proper nutritional status may partially slow down depletion in antioxidant capacity, and may therefore have an impact on antioxidant/ oxidant status in lung cancer patients. However, no studies concerning these associations had previously been conducted.
Objectives. The aim of this study was to investigate the association between GI or GL and nutritional status and antioxidant/oxidant status in lung cancer patients.
Material and Methods. The study was conducted among 180 lung cancer patients (82 women and 98 men) and 171 control subjects (78 women and 93 men). Exclusion criteria for the control subjects included cancers, pro-inflammatory conditions, brain diseases, and psychiatric disorders. All participants were evaluated in terms of their systemic antioxidant/oxidant status, nutritional status (anthropometric parameters), dietary GI and GL and parameters related to circulating glucose: fasting glucose, insulin level and homeostasis model assessment for insulin resistance (HOMA-IR).
Results. In women who were lung cancer-positive, associations were observed between total antioxidant status (TAS) and parameters of nutritional status, and between oxidative stress index (OSI) and fasting glucose. In men with lung cancer, we found a positive correlation between total oxidant status (TOS) and GI. In the control group of women, TAS positively correlated with anthropometric parameters, but negatively with dietary fiber and total carbohydrate content. Additionally, TOS and OSI negatively correlated with parameters related to body weight and positively with insulin. In control men, we observed significant negative correlations between parameters related to fasting glucose and TAS and positive ones with TOS and OSI.
Conclusion. The results show that in lung cancer oxidative stress is related to GI, while TAS is related to nutritional status. Further investigations performed on a larger cohort are required to better clarify the observed relationships as well as to explain the potential mechanisms involved.

Key words

lung cancer, nutritional status, oxidative stress, glycemic load, glycemic index

References (50)

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10. 3322/caac.21262
  2. Wojciechowska U, Didkowska J. Zachorowania i zgony na nowotwory złośliwe w Polsce. Krajowy Rejestr Nowotworów, Centrum Onkologii – Instytut im. Marii Skłodowskiej-Curie. http://onkologia.org.pl/raporty/. Accessed June 23, 2018.
  3. Wang A, Kubo J, Luo J, et al. Active and passive smoking in relation to lung cancer incidence in the Women’s Health Initiative Observational Study prospective cohort. Ann Oncol. 2015;26(1):221–230. doi:10.1093/annonc/mdu470
  4. Filaire E, Dupuis C, Galvaing G, et al. Lung cancer: What are the links with oxidative stress, physical activity and nutrition. Lung Cancer. 2013;82(3):383–389. doi:10.1016/J.LUNGCAN.2013.09.009
  5. Wang Y, Li F, Wang Z, Qiu T, Shen Y, Wang M. Fruit and vegetable consumption and risk of lung cancer: A dose–response meta-analysis of prospective cohort studies. Lung Cancer. 2015;88(2):124–130.
  6. Misthos P, Katsaragakis S, Milingos N, et al. Postresectional pulmonary oxidative stress in lung cancer patients: The role of one-lung ventilation. Eur J Cardiothorac Surg. 2005;27(3):379–383. doi:10.1016/j.ejcts.2004.12.023
  7. Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol. 2006;533(1–3):222–239. doi:10.1016/J.EJPHAR.2005.12.087
  8. Gharibvand L, Shavlik D, Ghamsary M, et al. The association between ambient fine particulate air pollution and lung cancer incidence: Results from the AHSMOG-2 study. Environ Health Perspect. 2017;125(3):378–384. doi:10.1289/EHP124
  9. Saha SK, Lee S Bin, Won J, et al. Correlation between oxidative stress, nutrition, and cancer initiation. Int J Mol Sci. 2017;18(7):1544. doi:10.3390/ijms18071544
  10. Khare M, Mohanty C, Das BK, Jyoti A, Mukhopadhyay B, Mishra SP. Free radicals and antioxidant status in protein energy malnutrition. Int J Pediatr. 2014;2014:1–6. doi:10.1155/2014/254396
  11. Mantovani G, Madeddu C, Macciò A. Cachexia and oxidative stress in cancer: An innovative therapeutic management. Curr Pharm Des. 2012;18(31):4813–4818. doi:10.2174/138161212803216889
  12. Russo GL, Tedesco I, Spagnuolo C, Russo M. Antioxidant polyphenols in cancer treatment: Friend, foe or foil? Semin Cancer Biol. 2017;46:1–13. doi:10.1016/j.semcancer.2017.05.005
  13. Pitsavos C, Panagiotakos DB, Tzima N, Chrysohoou C, Economou M. Adherence to the Mediterranean diet is associated with total antioxidant capacity in healthy adults: The ATTICA study. Am J Clin Nutr. 2005;82(3):694–699.
  14. Hu Y, Block G, Norkus EP, Morrow JD, Dietrich M, Hudes M. Relations of glycemic index and glycemic load with plasma oxidative stress markers. Am J Clin Nutr. 2006;84(1):70–77. doi:10.1093/ajcn/84.1.70
  15. Dudziak K, Regulska-Ilow B. The importance of glycemic load of the diet in the development of cancer. Postepy Hig Med Dosw (Online). 2013;67:449–462. doi:10.5604/17322693.1050032
  16. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103–1111. doi:10.1016/j.clinbiochem.2005.08.008
  17. Aycicek A, Erel O, Kocyigit A. Decreased total antioxidant capacity and increased oxidative stress in passive smoker infants and their mothers. Pediatr Int. 2005;47(6):635–639.
  18. Jacobo-Cejudo MG, Valdés-Ramos R, Guadarrama-López AL, Pardo-Morales RV, Martínez-Carrillo BE, Harbige LS. Effect of n-3 polyunsaturated fatty acid supplementation on metabolic and inflammatory biomarkers in type 2 diabetes mellitus patients. Nutrients. 2017;9(6):573.
  19. Schutz Y, Kyle UUG, Pichard C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18–98 y. Int J Obes Relat Metab Disord. 2002;26(7):953–960.
  20. Schröder H, Covas MI, Marrugat J, et al. Use of a three-day estimated food record, a 72-hour recall and a food-frequency questionnaire for dietary assessment in a Mediterranean Spanish population. Clin Nutr. 2001;20(5):429–437.
  21. Szponar L, Rychlik E, Wolnicka K; Instytut Żywności i Żywienia im. Aleksandra Szczygła. Album fotografii produktów i potraw. Warszawa, Poland: Instytut Żywności i Żywienia; 2008.
  22. Kunachowicz H. Przygoda B. Nadolna I. Iwanow K. Tabele składu i wartości odżywczej żywności. Warszawa, Poland: Wydawnictwo Lekarskie PZWL; 2017.
  23. Louie JCY, Flood V, Turner N, Everingham C, Gwynn J. Methodology for adding glycemic index values to 24-hour recalls. Nutrition. 2011;27(1):59–64. doi:10.1016/j.nut.2009.12.006
  24. Atkinson FS, Foster-Powell K, Brand-Miller JC. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care. 2008;31(12):2281–2283.
  25. The University of Sydney. Glycemic Index Research Service 2007. www.glycemicindex.com. Accessed on April 20, 2018.
  26. National Cancer Institute. Diet History Questionnaire Database File 2006.http://riskfactor.cancer.gov/DHQ/database/dhq1_032806.csv
  27. Zabłocka-Słowińska K, Porębska I, Gołecki M, et al. Total antioxidant status in lung cancer is associated with levels of endogenous antioxidants and disease stage rather than lifestyle factors: Preliminary study. Contemp Oncol (Pozn). 2016;20(4):302–307. doi:10.5114/wo.2016.61850
  28. Rahman I, MacNee W. Role of oxidants/antioxidants in smoking-induced lung diseases. Free Radic Biol Med. 1996;21(5):669–681. doi:10.1016/0891-5849(96)00155-4
  29. Marfella R, Quagliaro L, Nappo F, Ceriello A, Giugliano D. Acute hyperglycemia induces an oxidative stress. J Clin Invest. 2001;108(4):635–636. doi:10.1172/JCI0113727A
  30. Azad N, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: Roles of reactive oxygen/nitrogen species. J Toxicol Environ Heal B Crit Rev. 2008;11(1):1–15. doi:10.1080/10937400701436460
  31. Arends J, Baracos V, Bertz H, et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin Nutr. 2017;36(5):1187–1196. doi:10.1016/j.clnu.2017.06.017
  32. Heber D, Chlebowski RT, Ishibashi DE, Patients C, Herrold JN, Block JB. Abnormalities in glucose and protein metabolism in noncachectic lung cancer patients. Cancer Res. 1982;42(11):4815–4819.
  33. Petridou ET, Sergentanis TN, Antonopoulos CN, et al. Insulin resistance: An independent risk factor for lung cancer? Metabolism. 2011;60(8):1100–1106. doi:10.1016/j.metabol.2010.12.002
  34. Ceriello A. Postprandial hyperglycemia and diabetes complications: Is it time to treat? Diabetes. 2005;54(1):1–7. doi:10.2337/DIABETES.54.1.1
  35. Rajendran P, Nandakumar N, Rengarajan T, et al. Antioxidants and human diseases. Clin Chim Acta. 2014;436(7):332–347. doi:10.1016/j.cca.2014.06.004
  36. Klement RJ, Kämmerer U. Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab. 2011;8(1):75. doi:10.1186/1743-7075-8-75
  37. Melkonian SC, Daniel CR, Ye Y, Pierzynski JA, Roth JA, Wu X. Glycemic index, glycemic load, and lung cancer risk in non-Hispanic whites. Cancer Epidemiol Biomarkers Prev. 2016;25(3):532–539. doi:10.1158/1055-9965.EPI-15-0765
  38. Romieu I, Ferrari P, Rinaldi S, et al. Dietary glycemic index and glycemic load and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr. 2012;96(2):345–355.
  39. Hu J, La Vecchia C, Augustin LS, et al; Canadian Cancer Registries Epidemiology Research Group. Glycemic index, glycemic load and cancer risk. Ann Oncol. 2013;24:245–251. doi:10.1093/annonc/mds235
  40. Turati F, Galeone C, Gandini S, et al. High glycemic index and glycemic load are associated with moderately increased cancer risk. Mol Nutr Food Res. 2015;59(7):1384–1394. doi:10.1002/mnfr.201400594
  41. Griffith JA, Ma Y, Chasan-Taber L, et al. Association between dietary glycemic index, glycemic load, and high-sensitivity C-reactive protein. Nutrition. 2008;24(5):401–406.
  42. Augustin LSA, Kendall CWC, Jenkins DJA, et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr Metab Cardiovasc Dis. 2015;25(9):795–815. doi:10.1016/j.numecd.2015.05.005
  43. Botero D, Ebbeling CB, Blumberg JB, et al. Acute effects of dietary glycemic index on antioxidant capacity in a nutrient-controlled feeding study. Obesity (Silver Spring). 2009;17(9):1664–1670. doi:10.1038/oby.2009.203
  44. Schwingshackl L, Hoffmann G. Long-term effects of low glycemic index/load vs. high glycemic index/load diets on parameters of obesity and obesity-associated risks: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis. 2013;23(8):699–706. doi:10.1016/j.numecd.2013.04.008
  45. Pittas AG, Roberts SB, Das SK, et al. The effects of the dietary glycemic load on type 2 diabetes risk factors during weight loss. Obesity (Silver Spring). 2006;14(12):2200–2209.
  46. Marin-Corral J, Fontes CC, Pascual-Guardia S, et al. Redox balance and carbonylated proteins in limb and heart muscles of cachectic rats. Antioxid Redox Signal. 2010;12(3):365–380. doi:10.1089/ars.2009.2818
  47. Puig-Vilanova E, Rodriguez DA, Lloreta J, et al. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic Biol Med. 2015;79:91–108. doi:10.1016/j.freeradbiomed.2014.11.006
  48. Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity-associated oxidative stress: Strategies finalized to improve redox state. Int J Mol Sci. 2013;14(5):10497–10538. doi:10.3390/ijms140510497
  49. Barp J, Araújo ASDR, Fernandes TRG, et al. Myocardial antioxidant and oxidative stress changes due to sex hormones. Braz J Med Biol Res. 2002;35(9):1075–1081.
  50. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2017;114(12):1752–1761.