Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1
5-Year Impact Factor – 2.2
Scopus CiteScore – 3.4 (CiteScore Tracker 3.7)
Index Copernicus  – 161.11; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2019, vol. 28, nr 6, June, p. 833–838

doi: 10.17219/acem/94148

Publication type: review

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Circulating and circular RNAs and the need for rationalization and synthesis of the research spiral

Pavel Dvorak1,2,D,E,F, Sarah Leupen3,D,E,F, Pavel Soucek2,D,E,F

1 Department of Biology, Faculty of Medicine in Pilsen, Charles University, Czech Republic

2 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Czech Republic

3 Department of Biological Sciences, University of Maryland, Baltimore, USA

Abstract

In this essay, we aim to draw a short comparison between 2 important research topics – circular and circulating RNAs – and show how they are connected. The findings described here in the field of circular RNAs, which are still quite obscured by the rapidly expanding body of knowledge in biology, have added another dimension to our view of the process of gene expression, which is formed by a more complex network of molecule interactions than we previously thought. The term “circulating RNAs” refers to a broad spectrum of RNA fragments originating from different sources, such as physiologically dying cells, sites of inflammation or cancer cells, and fragments floating in human liquid tissues together with other elements. Fragments of nucleic acids circulating in blood are emerging as promising biomarkers in different medical conditions. Interestingly, circular RNAs have been found to be present in human blood and form a fraction of circulating RNAs. In addition to updating readers on these fast-developing areas of biology, we also stress the need for the study of complex networks of molecule interactions as whole structures (in unison with the thoughts of systems biology), as opposed to the trend toward searching for individual key player molecules. Fundamentally, we want to add to the rationalization and synthesis of new research findings in the scientific literature, because this direction is important not only for students, teachers and researchers, but also for the general population.

Key words

synthesis, circular RNA, circulating RNA, complex networks, systems biology

References (35)

  1. Jeck W, Sorrentino J, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2012;19(2):141–157. doi:10.1261/rna.035667.112
  2. Salzman J, Gawad C, Wang P, Lacayo N, Brown P. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012;7(2):e30733. doi:10.1371/journal.pone.0030733
  3. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–338. doi:10.1038/nature11928
  4. Fatica A, Bozzoni I. Long non-coding RNAs: New players in cell differentiation and development. Nat Rev Genet. 2013;15(1):7–21. doi:10.1038/nrg3606
  5. Kung J, Colognori D, Lee J. Long noncoding RNAs: Past, present, and future. Genetics. 2013;193(3):651–669. doi:10.1534/genetics.112.146704
  6. Barrett S, Salzman J. Circular RNAs: Analysis, expression and potential functions. Development. 2016;143(11):1838–1847. doi:10.1242/dev.128074
  7. Ebbesen K, Kjems J, Hansen T. Circular RNAs: Identification, biogenesis and function. Biochim Biophys Acta. 2016;1859(1):163–168. doi:10.1016/j.bbagrm.2015.07.007
  8. Salzman J, Chen R, Olsen M, Wang P, Brown P. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9(9):e1003777. doi:10.1371/journal.pgen.1003777
  9. Kulcheski F, Christoff A, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol. 2016;238:42–51. doi:10.1016/j.jbiotec.2016.09.011
  10. Hansen T, Jensen T, Clausen B, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–388. doi:10.1038/nature11993
  11. Huang S, Yang B, Chen B, et al. The emerging role of circular RNAs in transcriptome regulation. Genomics. 2017;109(5–6):401–407. doi:10.1016/j.ygeno.2017.06.005
  12. Ashwal-Fluss R, Meyer M, Pamudurti N, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66. doi:10.1016/j.molcel.2014.08.019
  13. Huang G, Li S, Yang N, Zou Y, Zheng D, Xiao T. Recent progress in circular RNAs in human cancers. Cancer Lett. 2017;404:8–18. doi:10.1016/j.canlet.2017.07.002
  14. Kristensen L, Hansen T, Venø M, Kjems J. Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 2017;37(5):555–565. doi:10.1038/onc.2017.361
  15. Zhang H, Jiang L, Sun D, Hou J, Ji Z. CircRNA: A novel type of biomarker for cancer. Breast Cancer. 2017;25(1):1–7. doi:10.1007/s12282-017-0793-9
  16. Glažar P, Papavasileiou P, Rajewsky N. circBase: A database for circular RNAs. RNA. 2014;20(11):1666–1670. doi:10.1261/rna.043687.113
  17. Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One. 2015;10(10):e0141214. doi:10.1371/journal.pone.0141214
  18. Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil. 1948;142(3–4):241–243.
  19. Vermeesch J, Voet T, Devriendt K. Prenatal and pre-implantation genetic diagnosis. Nat Rev Genet. 2016;17(10):643–656. doi:10.1038/nrg.2016.97
  20. Volik S, Alcaide M, Morin R, Collins C. Cell-free DNA (cfDNA): Clinical significance and utility in cancer shaped by emerging technologies. Mol Cancer Res. 2016;14(10):898–908. doi:10.1158/1541-7786.mcr-16-0044
  21. Sorber L, Zwaenepoel K, Deschoolmeester V, et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer. 2017;107:100–107. doi:10.1016/j.lungcan.2016.04.026
  22. Falcon-Perez J, Royo F. Circulating RNA: Looking at the liver through a frosted glass. Biomarkers. 2015;20(6–7):339–354. doi:10.3109/1354750x.2015.1101785
  23. Jiang P, Lo Y. The long and short of circulating cell-free DNA and the ins and outs of molecular diagnostics. Trends Genet. 2016;32(6):360–371. doi:10.1016/j.tig.2016.03.009
  24. Krug A, Enderle D, Karlovich C, et al. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann Oncol. 2018;29(3):700–706. doi:10.1093/annonc/mdx765
  25. Szabo L, Salzman J. Detecting circular RNAs: Bioinformatic and experimental challenges. Nat Rev Genet. 2016;17(11):679–692. doi:10.1038/nrg.2016.114
  26. Fernandez-Mercado M, Manterola L, Larrea E, et al. The circulating transcriptome as a source of non-invasive cancer biomarkers: Concepts and controversies of non-coding and coding RNA in body fluids. J Cell Mol Med. 2015;19(10):2307–2323. doi:10.1111/jcmm.12625
  27. Tiberio P, Callari M, Angeloni V, Daidone M, Appierto V. Challenges in using circulating miRNAs as cancer biomarkers. Biomed Res Int. 2015;2015:1–10. doi:10.1155/2015/731479
  28. Enuka Y, Lauriola M, Feldman M, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2015;44(3):1370–1383. doi:10.1093/nar/gkv1367
  29. Breitling R. What is systems biology? Front Physiol. 2010;1:9. doi:10.3389/fphys.2010.00009
  30. Kitano H. Systems biology: A brief overview. Science. 2002;295(5560):1662–1664. doi:10.1126/science.1069492
  31. Yurkovich J, Palsson B. Quantitative-omic data empowers bottom-up systems biology. Curr Opin Biotechnol. 2018;51:130–136. doi:10.1016/j.copbio.2018.01.009
  32. Li M, Ding W, Sun T, et al. Biogenesis of circular RNAs and their roles in cardiovascular development and pathology. FEBS J. 2018;285(2):220–232. doi:10.1111/febs.14191
  33. Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 2017;66(1):22–37.e9. doi:10.1016/j.molcel.2017.02.017
  34. Pamudurti N, Bartok O, Jens M, et al. Translation of circRNAs. Mol Cell. 2017;66(1):9–21.e7. doi:10.1016/j.molcel.2017.02.021
  35. Zhang H, Jiang L, Sun D, Hou J, Ji Z. CircRNA: A novel type of biomarker for cancer. Breast Cancer. 2018;25(1):1–7. doi:10.1007/s12282-017-0793-9