Advances in Clinical and Experimental Medicine

Adv Clin Exp Med
Impact Factor (IF) – 1.227
Index Copernicus (ICV) – 155.19, MNiSW – 40
Average rejection rate – 84.38%
ISSN 1899–5276 (print),   ISSN 2451-2680 (online)
Periodicity – monthly

Download PDF

Advances in Clinical and Experimental Medicine

2018, vol. 27, nr 2, February, p. 263–270

doi: 10.17219/acem/66842

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Role of miR-181a in the process of apoptosis of multiple malignant tumors: A literature review

Xialu Feng1,A,B,C,E,F, Chen Zhang1,A,B,C,F, Yan Yang1,B,C,D,F, Deren Hou1,C,D,F, Anding Zhu1,C,D,F

1 Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China

Abstract

It has been recognized that miR-181a expression is dysregulated and intimately associated with clinical prognosis in a variety of human cancers. However, the direct role of miR-181a in tumor progression has been elusive. Moreover, mounting evidence has demonstrated that cellular apoptosis, a physiological process of programmed cell death, is disrupted in various categories of human malignancies. Multiple apoptosisrelated genes have been proven to act as the target genes of miR-181a. In this study, we hypothesize that miR-181a probably plays a potential role in modulating the procession and apoptosis of cancer cells. We performed a literature review and elucidated how miR-181a modulated cellular apoptosis, especially the malignant neoplasm cells. We also unraveled the potential role of miR-181a in the diagnosis, treatment and clinical prognosis of multiple human malignancies – miR-181a plays a pivotal role in the development, treatment and prognosis of patients suffering from malignant tumors. It also participates in the development of cancer partially by modulating cellular apoptosis.

Key words

miR-181a, apoptosis, Bcl-2 family, P53, PRKCD

References (60)

  1. Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 2013;73(2):473–477.
  2. Wong RS. Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.
  3. Cheng XL, Li MK. Effect of topiramate on apoptosis-related protein expression of hippocampus in model rats with Alzheimers disease. Eur Rev Med Pharmacol Sci. 2014;18(6):761–768.
  4. Joshi A, Lee RT, Mohl J, et al. Genetic signatures of HIV-1 envelope-mediated bystander apoptosis. J Biol Chem. 2014;289(5):2497–2514. doi:10.1074/jbc.M113.514018
  5. Wang Y, Wu J, Jiang B, et al. Relationship between ischemia/reperfusion injury and acute rejection of allogeneic liver transplant in rats. Transplant Proc. 2014;46(1):50–55.
  6. Zeng Z, Shen L, Li X, et al.Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis. Clin Sci (Lond). 2014;127(7):435–448.
  7. Ouyang L, Shi Z, Zhao S, et al. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(6):487–498.
  8. Gong J, Xie J, Bedolla R, et al. Combined targeting of STAT3/NF-κB/COX-2/EP4 for effective management of pancreatic cancer. Clin Cancer Res. 2014;20(5):1259–1273.
  9. Sun Y, Peng ZL. Programmed cell death and cancer. Postgrad Med J. 2009;85(1001):134–140.
  10. Yao YM, Shi HR, Ji M, Chen CH. MiR-106a targets Mcl-1 to suppress cisplatin resistance of ovarian cancer A2780 cells. J Huazhong Univ Sci Technolog Med Sci. 2013;33(4):567–572.
  11. Ribeiro J, Sousa H. MicroRNAs as biomarkers of cervical cancer development: A literature review on miR-125b and miR-34a. Mol Biol Rep. 2014;41(3):1525–1531.
  12. Neel JC, Lebrun JJ. Activin and TGF regulate expression of the microRNA-181 family to promote cell migration and invasion in breast cancer cells. Cell Signal. 2013;25(7):1556–1566.
  13. Gao W, Shen H, Liu L, Shu Y. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol. 2011;137:557–566.
  14. Shin KH, Bae SD, Hong HS, Kim RH, Kang MK, Park NH. MiR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras. Biochem Biophys Res Commun. 2011;404:896–902.
  15. Gao W, Yu Y, Cao H, Shen H, Li X, Pan S. Deregulated expression of miR-21, miR-141 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother. 2010;64:399–408.
  16. Wu Y, Li XF, Yang JH, Liao XY, Chen YZ. microRNAs expression profile in acute promyelocytic leukemia cell differentiation induced by all-trans retinoic acid and arsenic trioxide. Zhonghua Xue Ye Xue Za Zhi. 2012;33(7):546–551.
  17. He Q, Zhou X, Li S, et al. MicroRNA-181a suppresses salivary adenoid cystic carcinoma metastasis by targeting MAPK-Snai2 pathway. Biochim Biophys Acta. 2013;1830(11):5258–5266.
  18. Jiao X, Zhao L, Ma M, et al. MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat. 2013;139(3): 717–730.
  19. Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A. 2008;105:12885–12890.
  20. Liu J, Xu D, Wang Q, Zheng D, Jiang X, Xu L. LPS induced miR-181a promotes pancreatic cancer cell migration via targeting PTEN and MAP2K4. Dig Dis Sci. 2014;59(7):1452–1460.
  21. Zhang X, Nie Y, Du Y, Cao J, Shen B, Li Y. MicroRNA-181a promotes gastric cancer by negatively regulating tumor suppressor KLF6. Tumour Biol. 2012;33(5):1589–1597.
  22. Brockhausen J, Tay SS, Grzelak CA. miR-181a mediates TGF-β-induced hepatocyte EMT and is dysregulated in cirrhosis and hepatocellular cancer. Liver Int. 2014;35(1):240–253. doi:10.1111/liv.12517
  23. Ji D, Chen Z, Li M, et al. MicroRNA-181a promotes tumor growth and liver metastasis in colorectal cancer by targeting the tumor suppressor WIF-1. Mol Cancer. 2014;13(1):86.
  24. Zou C, Li Y, Cao Y, et al. Up-regulated MicroRNA-181a induces carcinogenesis in hepatitis B virus-related hepatocellular carcinoma by targeting E2F5. BMC Cancer. 2014;14:97. doi:10.1186/1471-2407-14-97
  25. Parikh A, Lee C, Joseph P, et al. microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial-mesenchymal transition. Nat Commun. 2014;5:2977. doi:10.1038/ncomms3977
  26. Lin S, Pan L, Guo S, et al. Prognostic role of microRNA-181a/b in hematological malignancies. A meta-analysis. PLoS One. 2013;8(3):e59532. doi:10.1371/journal.pone.0059532
  27. Khan KH. Cancer therapeutics: Targeting the apoptosis pathway. Crit Rev Oncol Hematol. 2014;90(3):200–219.
  28. Danial NN, Gimenez-Cassina A, Tondera D. Homeostatic functions of BCL-2 proteins beyond apoptosis. Adv Exp Med Biol. 2010;687:1–32.
  29. Rolland SG, Conradt B. New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics. Curr Opin Cell Biol. 2010;22:852–858.
  30. Zhu Y, Wu J, Li S, et al. The function role of miR-181a in chemosensitivity to adriamycin by targeting Bcl-2 in low-invasive breast cancer cells. Cell Physiol Biochem. 2013;32(5):1225–1237.
  31. Jianwei Z, Fan L, Xiancheng L, Enzhong B, Shuai L, Can L. MicroRNA 181a improves proliferation and invasion, suppresses apoptosis of osteosarcoma cell. Tumour Biol. 2013;34(6):3331–3337.
  32. Chen G, Zhu W, Shi D, et al. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol Rep. 2010;23(4):997–1003.
  33. Khanna A, Muthusamy S, Liang R, Sarojini H, Wang E. Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice. Aging (Albany NY). 2011;3(3):223–236.
  34. Li H, Hui L, Xu W. MiR-181a sensitizes a multidrug-resistant leukemia cell line K562/A02 to daunorubicin by targeting BCL-2. Acta Biochim Biophys Sin (Shanghai). 2012;44(3):269–277.
  35. Bai H, Cao Z, Deng C, Zhou L, Wang C. MiR-181a sensitizes resistant leukaemia HL-60/Ara-C cells to Ara-C by inducing apoptosis. J Cancer Res Clin Oncol. 2012;138(4):595–602.
  36. Ouyang YB, Lu Y, Yue S, Giffard RG. miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion. 2012;12(2):213–219.
  37. Zhai XF, Fang FF, Liu Q, Meng YB, Guo YY, Chen Z. MiR-181a contributes to bufalin-induced apoptosis in PC-3 prostate cancer cells. BMC Complement Altern Med. 2013;13:325.
  38. Moon JM, Xu L, Giffard, RG. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. J Cereb Blood Flow Metab. 2013;33(12):1976–1982.
  39. Kazi A, Sun J, Doi K, et al. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein–protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner. J Biol Chem. 2011;286:9382–9392.
  40. Zhu DX, Zhu W, Fang C, et al. miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis. 2012;33(7):1294–1301.
  41. Galluzzi L, Morselli E, Vitale I, et al. miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res. 2010;70(5):1793–1803.
  42. Lwin T, Lin J, Choi YS, et al. Follicular dendritic cell-dependent drug resistance of non-Hodgkin lymphoma involves cell adhesion-mediated Bim down-regulation through induction of microRNA-181a. Blood. 2010;116(24):5228–5236.
  43. Wang DB, Kinoshita C, Kinoshita Y, Morrison RS. p53 and mitochondrial function in neurons. Biochim Biophys Acta. 2014;1842(8): 1186–1197.
  44. Zhang X, Nie Y, Li X, et al. MicroRNA-181a functions as an oncomir in gastric cancer by targeting the tumour suppressor gene ATM. Pathol Oncol Res. 2014;20(2):381–389. doi:10.1007/s12253-013-9707-0
  45. Larroque-Cardoso P, Swiader A, Ingueneau C, et al. Role of protein kinase C δ in ER stress and apoptosis induced by oxidized LDL in human vascular smooth muscle cells. Cell Death Dis. 2013;28:4:e520.
  46. Greene MW, Ruhoff MS, Burrington CM, Garofalo RS, Orena SJ. TNF alpha activation of PKC delta, mediated by NFkappaB and ER stress, cross-talks with the insulin signaling cascade. Cell Signal. 2010;22:274–284.
  47. Bergman P, James T, Kular L, et al. Next-generation sequencing identifies microRNAs that associate with pathogenic autoimmune neuroinflammation in rats. J Immunol. 2013;190(8):4066–4075. doi:10.4049/jimmunol.1200728
  48. Ke G, Liang L, Yang JM, et al. MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene. Oncogene. 2013;32(25):3019–3027. doi:10.1038/onc.2012.323
  49. Chen Y, Ke G, Han D, Liang S, Yang G, Wu X. MicroRNA-181a enhances the chemoresistance of human cervical squamous cell carcinoma to cisplatin by targeting PRKCD. Exp Cell Res. 2014;320(1):12–20.
  50. Jiang X, Huang H, Li Z, et al. MiR-495 is a tumor-suppressor microRNA down-regulated in MLL-rearranged leukemia. Proc Natl Acad Sci USA. 2012;109(47):19397–19402. doi:10.1073/pnas.1217519109
  51. Li Z, Huang H, Li Y, et al. Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood. 2012;119(10):2314–2324. doi:10.1182/blood-2011-10-386235
  52. Borrego-Diaz E, Terai K, Lialyte K, et al. Overactivation of Ras signaling pathway in CD133+ MPNST cells. J Neurooncol. 2012;108(3):423–434. doi:10.1007/s11060-012-0852-1
  53. Male H, Patel V, Jacob MA, et al. Inhibition of RalA signaling pathway in treatment of non-small cell lung cancer. Lung Cancer. 2012;77(2):252–259.
  54. Zhu X, Li Y, Luo X, Fei J. Inhibition of small GTPase RalA regulates growth and arsenic-induced apoptosis in chronic myeloid leukemia (CML) cells. Cell Signal. 2012;24(6):1134–1140. doi:10.1016/j.cellsig.2012.01.016
  55. Fei J, Li Y, Zhu X, Luo X. miR-181a post-transcriptionally downregulates oncogenic RalA and contributes to growth inhibition and apoptosis in chronic myelogenous leukemia (CML). PLoS One. 2012;7(3):e32834.
  56. Yang GD, Huang TJ, Peng LX, et al. Epstein-Barr virus_encoded LMP1 upregulates microRNA-21 to promote the resistance of nasopharyngeal carcinoma cells to cisplatin-induced apoptosis by suppressing PDCD4 and Fas-L. PLoS One. 2013;8(10):e78355.
  57. Ren W, Wang X, Gao L, et al. miR-21 modulates chemosensitivity of tongue squamous cell carcinoma cells to cisplatin by targeting PDCD4. Mol Cell Biochem. 2014;390(1–2):253–262. doi:10.1007/s11010-014-1976-8
  58. Li H, Xu H, Shen H, Li H. microRNA-106a modulates cisplatin sensitivity by targeting PDCD4 in human ovarian cancer cells. Oncol Lett. 2014;7(1):183–188.
  59. Ota D, Mimori K, Yokobori T, et al. Identification of recurrence-related microRNAs in the bone marrow of breast cancer patients. Int J Oncol. 2011;38:955–962.
  60. Su SF, Chang YW, Andreu-Vieyra C, et al. miR-30d, miR-181a and miR-199a-5p cooperatively suppress the endoplasmic reticulum chaperone and signaling regulator GRP78 in cancer. Oncogene. 2013;32(39):4694–4701.