Advances in Clinical and Experimental Medicine

Adv Clin Exp Med
Impact Factor (IF) – 1.514
Index Copernicus (ICV 2018) – 157.72
MNiSW – 40
Average rejection rate – 84.38%
ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download PDF

Advances in Clinical and Experimental Medicine

2017, vol. 26, nr 8, November, p. 1283–1291

doi: 10.17219/acem/68739

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Sclerostin: Intracellular mechanisms of action and its role in the pathogenesis of skeletal and vascular disorders

Barbara Pietrzyk1,D, Mike Smertka1,D, Jerzy Chudek1,D,E,F

1 Department of Pathophysiology, Medical University of Silesia, Katowice, Poland


Sclerostin is a glycoprotein involved in the regulation of bone metabolism, exclusively secreted by osteocytes. It affects the activity of bone morphogenetic proteins (BMPs) and is an inhibitor of the Wnt/β-catenin metabolic pathway in bone cells. Osteocytes reduce the release of sclerostin in response to mechanical stimuli acting on bone, and thus promote the activation of osteogenic pathway Wnt/β-catenin in osteoblasts. This signaling pathway plays a key role in osteogenesis and bone turnover. Loss of sclerostin gene function is related to 3 different craniotubular hyperostosis processes: sclerosteosis, craniodiaphyseal dysplasia, and van Buchem disease. Additionally, experimental and clinical studies suggest that sclerostin may promote vascular calcification. Antibodies directed against sclerostin stimulate bone formation and represent a new therapeutic option in the treatment of diseases with increased bone resorption, such as osteoporosis and inflammatory diseases where there is generalized bone loss, periarticular osteoporosis, and cartilage damage, such as rheumatoid arthritis (RA), ankylosing spondylitis (AS), and glucocorticoid-induced osteoporosis (GIO). Antibody use has the potential to offer new therapeutic approaches in the therapy of mineral and bone disorders resulting from chronic kidney disease (CKD-MBD) and vascular calcifications.

Key words

osteoporosis, bone mineral density, vascular damage, sclerostin, Wnt/β-catenin pathway

References (71)

  1. Chapurlat RD, Delmas PD. Bone microdamage: A clinical perspective. Osteoporos Int. 2009;20:1299–1308.
  2. Winkler DG, Sutherland MK, Geoghegan JC, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:6267–6276.
  3. Kramer I, Halleux C, Keller H, et al. Osteocyte Wnt/{beta}-catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010;30:3071–3085.
  4. Dallas SL, Bonewald LF. Dynamics of the transition from osteoblast to osteocyte. Ann NY Acad Sci. 2010;1192:437–443.
  5. Poole KE, van Bezooijen RL, Loveridge N, et al. Sclerostin is delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005;19:1842–1844.
  6. Choi HY, Dieckmann M, Herz J, Niemeier A. Lrp4, a novel receptor for Dickkopf-1 and sclerostin, is expressed by osteoblasts and regulated bone growth and turnover in vivo. PLoS One. 2009;20:7930.
  7. Li X, Zhang Y, Kang H, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280:19883–19887.
  8. Jackson A, Vayssière B, Garcia T, et al. Gene array analysis of Wnt-regulated genes in C3H10T1/2 cells. Bone. 2005;36:585–598.
  9. van Oers R, van Rietbergen B, Ito K, Hilbers P, Huiskes R. A sclerostin-based theory for strain-induced bone formation. Biomech Model Mechanobiol. 2011;10:663–670.
  10. Reddi AH. Initiation and promotion of endochondral bone formation by bone morphogenic proteins: Potential implications for avian tibial chondrodysplasia. Poultry Sci. 2009;79:978–981.
  11. Yang F, Tang W, So S, de Crombrugghe B, Zhang C. Sclerosin is a direct target of osteoblast-specific transcription factor osterix. Biochem Biophys Res Commun. 2010;400:684–688.
  12. Ott S. Sclerostin and Wnt Signaling – the pathway to bone strength. J Clin Endocrinol Metab. 2005;90:6741–6743.
  13. Krishnan V, Bryant HU, MacDougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116:1202–1209.
  14. Sutherland MK, Geoghegan JC, Yu C, et al. Sclerostin promotes the apoptosis of human osteoblastic cells: A novel regulation of bone formation. Bone. 2002;35:828–835.
  15. Hill TP, Später D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wnt/beta-catenin signaling prevents osteoblast from differentiating into chondrocytes. Dev Cell. 2005;8:727–738.
  16. Pelletier S, Dubourg L, Carlier MC, Hadj-Aissa A, Fouque D. The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol. 2013;8:819–823.
  17. Cejka D, Herberth J, Branscum AJ, et al. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol. 2011;6:877–882.
  18. Włodarski KH, Włodarski P. Osteoclast precursor cell fusion and regulation of nature osteoclast activity. Post Biol Kom. 2006;33:273–284.
  19. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependently pathway. PLoS One. 2011;6:25900.
  20. Bodine PVN. Wnt signaling control of bone cell apoptosis. Cell Research. 2008;18:248–225.
  21. Khosala S, Westendorf J, Oursler M. Building bone to reverse osteoporosis and repair fractures. J Clin Invest. 2008;118:421–428.
  22. Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–543.
  23. Winkler DG, Yu C, Geoghegan JC, et al. Noggin and sclerostin bone morphogenetic protein antagonists form a mutually inhibitory complex. J Biol Chem. 2004;279:36293–36298.
  24. Beighton PH, Hamersma H, Brunkow ME. SOST-related sclerosing bone dysplasias. Accessed November 1, 2015.
  25. Wergedal JE, Veskovic K, Hellan M, et al. Patients with van Buchem disease, an osteosclerotic genetic disease, have elevated bone formation markers, higher bone density, and greater derived polar moment of inertia than normal. J Clin Endocr Metab. 2003;88:5778–5783.
  26. van Lierop AH, Hamdy NA, Hamersma H, et al. Patients with sclerosteosis and disease carriers: Human models of the effect of sclerostin on bone turnover. J Bone Miner Res. 2011;26:2804–2811.
  27. Kim SJ, Bieganski T, Sohn YB, et al. Identification of signal peptide domain SOST mutations in autosomal dominant craniodiaphyseal dysplasia. Hum Genet. 2011;129:497–502.
  28. Uitterlinden AG, Arp PP, Paeper BW, et al. Polymorphisms in the sclerosteosis/van Buchem disease gene (SOST) region are associated with bone-mineral density in elderly whites. Am J Hum Genet. 2004;75:1032–1045.
  29. Berdiaki A, Datsis GA, Nikitovic D, et al. Parathyroid hormone (PTH) peptides through the regulation of hyaluronam metabolism affect osteosarcoma cell migration. IUBMB Life. 2010;62:377–386.
  30. Reppe S, Noer A, Grimholt RM, et al. Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women. J Bone Miner Res. 2015;30:249–256.
  31. Mödder UI, Hoey KA, Amin S, et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res. 2011;26:373–379.
  32. Kim RY, Yang HJ, Song YM, Kim IS, Hwang SJ. Estrogen modulates bone morphogenetic protein-induced sclerostin expression through the Wnt signaling pathway. Tissue Eng Part A. 2015;21:2076–2088.
  33. Mirza FS, Padhi ID, Raisz LG, Lorenzo JA. Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab. 2010;95:1991–1997.
  34. Sankaralingam A, Roplekar R, Turner C, Dalton RN, Hampson G. Changes in Dickkopf-1 (DKK1) and sclerostin following a loading dose of vitamin D2 (300,000 IU). J Osteoporos. 2014;2014:682763.
  35. Rubin MR. Bone cells and bone turnover in diabetes mellitus. Curr Osteoporos Rep. 2015;13:186–191.
  36. Muschitz C, Kocijan R, Marterer C, et al. Sclerostin levels and changes in bone metabolism after bariatric surgery. J Clin Endocrinol Metab. 2015;100:891–901.
  37. Raisz L. Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J Clin Invest. 2005;115:3318–3325.
  38. Reppe S, Noer A, Grimholt RM, et al. Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women. J Bone Miner Res. 2015;30:249–256.
  39. Cheng Q, Tang W, Sheu TJ, et al. Circulating TGF-β1 levels are negatively correlated with sclerostin levels in early postmenopausal women. Clin Chim Acta. 2016;455:87–92.
  40. Ardawi MS, Al-Kadi HA, Rouzi AA, Qari MH. Determinants of serum sclerostin in healthy pre- and postmenopausal women. J Bone Miner Res. 2011;26:2812–2822.
  41. Garnero P, Sornay-Rendu E, Munoz F, Borel O, Chapurlat RD. Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: The OFELY study. Osteoporos Int. 2013;24:489–494.
  42. Morales-Santana S, Díez-Pérez A, Olmos JM, et al. Circulating sclerostin and estradiol levels are associated with inadequate response to bisphosphonates in postmenopausal women with osteoporosis. Maturitas. 2015;82:402–410.
  43. Ono K, Ohashi S, Tanaka S. Rheumatoid arthritis and bone – perarticular and systemic bone loss. Clin Calcium. 2013;23:249–255.
  44. Charactcharoenwitthaya N, Khosla S, Atkinson EJ, McCready LK, Riggs BL. Effect of blockade of TNF-α and interleukine-1 action on bone resorption in early postmenopausal women. J Bone Miner Res. 2007;22:724–729.
  45. Axmann R, Böhm C, Krönke G, Zwerina J, Smolen J, Schett G. Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum. 2009;60:2747–2756.
  46. Harre U, Georgess D, Bang H, et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest. 2012;122:1791–1802.
  47. Chen XX, Baum W, Dwyer D, et al. Sclerostin inhibition reverses systemic, periarticular and local bone loss in arthritis. Ann Rheum Dis. 2013;72:1732–1736.
  48. Yao W, Dai W, Jiang L, et al. Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporos Int. 2016;27:283–294.
  49. Guañabens N, Gifre L, Peris P. The role of Wnt signaling and sclerostin in the pathogenesis of glucocorticoid-induced osteoporosis. Curr Osteoporos Rep. 2014;12: 90–97.
  50. Briot K, Roux C. Glucocorticoid-induced osteoporosis. RMD Open. 2015;8:1,e000014.
  51. Koos R, Brandenburg V, Mahnken AH, et al. Sclerostin as a potential novel biomarker for aortic valve calcification: An in vivo and ex vivo study. J Heart Valve Dis. 2013;22:317–325.
  52. Hampson G, Edwards S, Conroy S, Blake GM, Fogelman I, Frost ML. The relationship between inhibitors of the Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone. 2013;56:42–47.
  53. Kuipers AL, Miljkovic I, Carr JJ, et al. Association of circulating sclerostin with vascular calcification in Afro-Caribbean men. Atherosclerosis. 2015;239:218–223.
  54. Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: Implications in chronic kidney disease. Exp Cell Res. 2012;15:1040–1048.
  55. Jean G, Mayor B, Deleaval P, et al. Vascular calcification progression is an independent predictor of mortality in patients on haemodialysis. Nephron. 2015;130:169–174.
  56. London G, Guerin A, Marchais S, Métivier F, Pannier B, Adda H. Arterial media calcification in end-stage renal disease: Impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant. 2003;18:1731–1740.
  57. de Oca A, Maduen J, Martinez-Moreno J, et al. High-phosphate-induced calcification is related to SM22α promoter methylation in vascular smooth muscle cells. J Bone Mineral Res. 2010;25:1996–2005.
  58. Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: Responsiveness to multiple signal transduction pathways. J Cell Biochem. 2003;88:446–454.
  59. Zhu D, Mackenzie NC, Millán JL, Farquharson C, MacRae VE. The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS One. 2011;6:19595.
  60. Unver S, Kavlak E, Gümüsel HK, et al. Correlation between hypervolemia, left ventricular hypertrophy and fibroblast growth factor 23 in hemodialysis patients. Ren Fail. 2015;37:951–956.
  61. Drechsler C, Evenepoel P, Vervloet MG, et al. High levels of circulating sclerostin are associated with better cardiovascular survival in incident dialysis patients: Results from the NECOSAD study. Nephrol Dial Transplant. 2015;30:288–293.
  62. Delanaye P1, Krzesinski JM, Warling X, et al. Clinical and biological determinants of sclerostin plasma concentration in hemodialysis patients. Nephron Clin Pract. 2014; 128:127–134.
  63. Morena M, Jaussent I, Dupuy AM, et al. Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: Potential partners in vascular calcifications. Nephrol Dial Transplant. 2015;30:1345–1356.
  64. Cejka D, Marculescu R, Kozakowski N, et al. Renal elimination of sclerostin increases with declining kidney function. J Clin Endocrinol Metab. 2014;99:248–255.
  65. Kanbay M, Siriopol D, Saglam M, et al. Serum sclerostin and adverse outcomes in nondialyzed chronic kidney disease patients. J Clin Endocrinol Metab. 2014;99:1854–1861.
  66. Asamiya Y, Yajima A, Shimizu S, Otsubo S, Tsuchiya K, Nitta K. Associations between the levels of sclerostin, phosphate, and fibroblast growth factor-23 and treatment with vitamin D in hemodialysis patients with low intact PTH level. Osteoporos Int. 2015;26:1017–1028.
  67. Ishimura E, Okuno S, Ichii M, et al. Relationship between serum sclerostin, bone metabolism markers and bone mineral density in maintenance hemodialysis patients. J Clin Endocrinol Metab. 2014;99:4315–4320.
  68. Fang Y, Ginsberg C, Sugatani T, Monier-Faugere MC, Malluche H, Hruska KA. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85:142–150.
  69. Recker RR, Benson CT, Matsumoto T, et al. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res. 2015;30:216–224.
  70. Geusens P. New insights into treatment of osteoporosis in postmenopausal women. RMD Open. 2015;15:1,e000051.
  71. McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370:412–420.