Advances in Clinical and Experimental Medicine

Adv Clin Exp Med
Impact Factor (IF) – 1.262
Index Copernicus (ICV) – 155.19, MNiSW – 15
Rejection rate – 65.13%
License – Creative Commons (CC BY-NC-ND 4.0)
ISSN 1899–5276 (print),   ISSN 2451-2680 (online)
Periodicity – monthly

Download PDF

Advances in Clinical and Experimental Medicine

2017, vol. 26, nr 4, July, p. 571–575

doi: 10.17219/acem/62320

PubMed ID: 28691414

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Serum levels of vascular endothelial growth factor and basic fibroblast growth factor in children with brain tumors

Grażyna Sobol-Milejska1,A,B,C,D,F, Agnieszka Mizia-Malarz1,A,B,C,F, Katarzyna Musiol1,B,F, Jerzy Chudek2,E,F, Maria Bożentowicz-Wikarek2,B, Halina Wos1,E, Marek Mandera3,E

1 Department of Pediatric Oncology, Hematology and Chemotherapy, Upper Silesia Children’s Care Health Centre, Medical University of Silesia, Katowice, Poland

2 Department of Pathophysiology, Medical University of Silesia, Katowice, Poland

3 Department of Neurosurgery, Upper Silesia Children’s Care Health Centre, Medical University of Silesia, Katowice, Poland

Abstract

Background. Angiogenesis is the process of new vessel formation originating from the existing vascular network. It plays an important role in the growth and spread of malignancies, including brain tumors. The process of angiogenesis is characterized by increased expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), and by the release of their soluble forms into circulation.
Objectives. The aim of the study was to evaluate serum levels of VEGF and bFGF in children with malignant and benign brain tumors.
Material and Methods. The study group (group N) included 106 children diagnosed with brain tumors. The children in group N were classified according to tumor pathology into 3 subgroups: N1 (n = 63): patients with malignant tumors, excluding anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM); N2 (n = 25): patients with benign tumors; and N3 (n = 18): patients with high grade gliomas (AA and GBM). VEGF and bFGF were determined by ELISA in blood samples before the initiation of chemotherapy. VEGF and bFGF levels were compared within the subgroups in relation to tumor grading and the extent of surgery.
Results. The median VEGF in patients with brain tumors was significantly higher than in the control group. The median levels of VEGF and bFGF in subgroup N1 were significantly higher than in the control group. The differences in VEGF and bFGF concentrations between the subgroups in relation to the extent of tumor resection were not significant.
Conclusion. Significantly higher plasma VEGF levels in children with brain neoplasms may reflect enhanced angiogenesis in the tumors.

Key words

children, vascular endothelial growth factor, brain tumor, basic fibroblast growth factor

References (39)

  1. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–660.
  2. Folkman J. Angiogenesis and apoptosis. Semin Cancer Biol. 2003;13:159–167.
  3. Mizia-Malarz A, Sobol G, Woś H. Angiogeneza w przewlekłych schorzeniach zapalnych i nowotworowych. Pol Merk Lek. 2008;XXIV:185–189.
  4. Domagała W. Molekularne podstawy karcynogenezy i ścieżki sygnałowe niektórych nowotworów ośrodkowego układu nerwowego. Pol Przegl Neur. 2007;3:127–141.
  5. Mizia-Malarz A, Sobol G, Woś H. Czynniki proangiogenne: naczyniowo-śródbłonkowy czynnik wzrostu (VEGF) i zasadowy czynnik wzrostu fibroblastów (bFGF) – charakterystyka i funkcje. Przeg Lek. 2008;65:353–357.
  6. Mizia-Malarz A, Sobol G, Janowska J, Zahorska-Markiewicz B. Prognostic value of proangiogenic cytokines in children with lymphomas. Pediatr Blood Cancer. 2009;53:1195–1199.
  7. Jain RK, di Thomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumors. Nat Rev Neurosci. 2007;8:610–622.
  8. Kim CY, Kim SK, Phi JK, Lee MM, Kim IA, Kim IH. A prospective study of temozolomide plus thalidomide during and after radiation therapy for pediatric diffuse Pontiac glioma: Preliminary results of Korean Society for Pediatric Neuro-Oncology study. J Neurooncol. 2010;100:193–198.
  9. Perek D, Roszkowski M. Nowotwory ośrodkowego układu nerwowego u dzieci. Diagnostyka i leczenie, 2nd ed. Warszawa: Fundacja Neuronet 2006.
  10. Bleeker FE, Molenaar RJ, Leenstra S. Recent advances in the molecular understanding of glioblastoma. J Neur Oncol. 2012;108:11–27.
  11. Chi AS, Sorensen AG, Jain RK, Batchelor TT. Angiogenesis as a therapeutic target in malignant gliomas. The Oncologist. 2009;14:621–636.
  12. Hwang EI, Jakacki RI, Fisher MJ, LB, Horn M, Vezina G, Rood BR, Packre RJ. Long term efficacy and toxicity of bevacizumab – based therapy in children with recurrent low grade gliomas. Pediatr Blood Cancer. 2013;60:776–782.
  13. Kieran MW, Tuner CD, Rubin JB. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol. 2005;27:573–581.
  14. Norden AD, Drappatz J, Wen PY. Antiangiogenic therapies for high grade glioma. Nat Rev Neurol. 2009;5:610–620.
  15. Peyrl A, Azizi A, Czech T. Tumor stabilization under treatment with imatinib in progressive hypothalamic – chiasmatic glioma. Pediatr Blood Cancer. 2009;52:476–480.
  16. Samuel DP, Wen PY, Kieran MW. Antiangiogenic (metronomic) chemotherapy for brain tumors: Current and future perspectives. Expert Opin Investig Drugs. 2009;18:973–983.
  17. Thompson EM, Frenkel EP, Neuwelt EA. The paradoxical effect of bevacizumab in the therapy of malignant gliomas. Neurology. 2011;76:87–93.
  18. Trevisan E, Bertero L, Bosa C, et al. Antiangiogenic therapy of brain tumors: The role of bevacizumab. Neurol Sci. 2014;35:507–514.
  19. Westmark B. Glioblastoma – a moving target. Upsala J Med Sci. 2012;2:251–256.
  20. Sie M, den Dunnem WF, Hoving EW, de Bont ES. Anti-angiogenic therapy in pediatric brain tumors: An effective strategy? Critic Rev Oncol Hematol. 2014;89:418–432.
  21. Hargrave D, Bartels U, Bouffet E. Diffuse brainstem glioma in children: Critical review of clinical trials. Lancet Oncol. 2006;7:241–248.
  22. Wojtukiewicz MZ, Sierko E, Rybałtowski M. Leczenie antyangiogenne chorych na pierwotne nowotwory ośrodkowego układu nerwowego. Onkol Prak Klin. 2009;5:A48–A55.
  23. Berkman RA, Merrill MJ, Reinhold WC, et al. Expression of vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J Clin Invest. 1993;91:153–159.
  24. Gupta K, Radotra BD, Banerjee AK, Nijhawan R. Quantitation of angiogenesis and its correlation with vascular endothelial growth factor expression in astrocytic tumors. Anal Quant Cytol Histol. 2004;2:223–229.
  25. Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66:7843–7848.
  26. Grossman R, Rudek MA, Brastianos H. The impact of bevacizumab on temozolomide concentration in intracranial U87 gliomas. Cancer Chemother Pharmacol. 2012;70:129–139.
  27. Hamerlik P, Lathia JD, Rasmussen R , et al. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med. 2012;3:507–520.
  28. Iwami K, Natsume A, Wakabayashi T. Cytokine networks in glioma. Neurosurg Rev. 2011;34:253–264.
  29. Jouanneau E. Angiogenesis and gliomas: Current issues and development of surrogate markers. Neurosurgery. 2008;62:31–50.
  30. Takano S, Yoshii Y, Kondo S, Suzuki H, Maruno T, Shirai S, Nose T. Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res. 1996;56:2185–2190.
  31. Arao T, Matsumoto K, Furuta K. Acquired drug resistance to vascular endothelial growth factor receptor 2 thyrosine kinase inhibitor in human vascular endothelial cells. Anticancer Res. 2011;31:2787–2796.
  32. Loilome W, Joshi AD, Piccirillo S, Angelo VL, Galia GL, Riggis GJ. Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling. J Neurooncol. 2009;94:359–366.
  33. Kerbel RS. Tumor angiogenesis: Past, present and the near future. Carcinogenesis. 2008;21:401–410.
  34. Maiuri F, Del Baso De Caro M, Siciliano A, et al. Expression of growth factors in brain tumors: Correlation with tumor grade, recurrence and survivals. Clin Neuropathol. 2010;9:109–114.
  35. Erdamar S, Bagci P, Oz B, Dirican A. Correlation of endothelial nitric oxide synthase and vascular endothelial growth factor expression with malignancy in patients with astrocytic tumors. J Buon. 2006;11:213–216.
  36. Krauze AV, Won M, Graves C, et al. Predictive value of tumor recurrence using urinary vascular endothelial factor levels in patients reciving radiation therapy for Glioblastoma Multiforme (GBM). Biomark Res. 2013;1:29, doi:10.1186/2050-7771-1-29, http://www.biomarkerres.org/content/1/1/2.9.
  37. Soda Y, Myskiw C, Rommel A, Verma IM. Mechanism of neovascularization and resistant to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med. 2013;91:439–448.
  38. Tuner N, Grose R. Fibroblast growth factor signaling: From development to cancer. Nat Rev Cancer. 2010;10:116–129.
  39. Beenken A, Mohammadi M. The FGF family: Biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8:8235–8253.