Advances in Clinical and Experimental Medicine

Adv Clin Exp Med
Impact Factor (IF) – 1.514
Index Copernicus (ICV 2018) – 157.72
MNiSW – 40
Average rejection rate – 84.38%
ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download PDF

Advances in Clinical and Experimental Medicine

2013, vol. 22, nr 5, September-October, p. 705–713

Publication type: original article

Language: English

Multislice Computed Tomography Angiography as an Imaging Modality of Choice in Patients with Suspicion of Pulmonary Embolism – Own Experiences and Modern Imaging Techniques

Wielorzędowa angiografia tomografii komputerowej jako metoda obrazowania z wyboru u pacjentów z podejrzeniem zatorowości płucnej – doświadczenia własne i nowoczesne techniki obrazowania

Jacek Kurcz1,A,B,C,D,E, Jerzy Garcarek1,A,E, Maciej Guziński1,C, Anna Czarnecka1,B,C, Marek J. Sąsiadek1,A,E,F

1 Department of General and Interventional Radiology and Neuroradiology, Chair of Radiology, Wroclaw Medical University, Poland

Abstract

Background. Pulmonary embolism (PE) is a relatively common and potentially life threatening clinical condition with estimated prevalence to be 0.4%. Early diagnosis of PE followed by adequate treatment reduces the risk of major complications. Multislice computed tomography pulmonary angiography (CTPA) currently constitutes an imaging modality of choice in patients with suspicion of PE. Computed tomography venography (CTV) of lower limb veins and CTPA can be performed simultaneously, allowing for visualization of lower limb deep vein thrombosis (DVT). Additionally, dual energy CT scanners enable the evaluation of lung perfusion which is of high value in indirect detection of pulmonary arterial microembolisms.
Objectives. The goal of the study was to assess the diagnostic value of a 64-detector CT scanner in the detection of both acute and chronic PE in patients with clinical suspicion of PE based on clinical scores.
Material and Methods. Retrospective analysis of CTPA performed between 2010 and 2012 in 102 consecutive patients (64 women, 38 men) with clinical suspicion of PE based on clinical scores (first of all the Wells score) and elevated D-dimer level was carried out. The patients’ median age was 68.9 (range between 34 and 91). The examinations were carried out with a 64-detector CT scanner, using a “pulmonary embolism” protocol. The volume of contrast agent ranged from 60 to 70 mL, depending on the patient’s body mass. The contrast medium was administered with an injection rate 4.0–5.0 mL/s. The concentration of the contrast medium in the main pulmonary artery (MPA) was monitored in every case with the use of a ‘smart-prep’ method. Scanning was started a few seconds (4–6) after reaching a plateau by the contrast medium in MPA. Additionally, in selected patients CTV was performed and/or lung perfusion was evaluated.
Results. Evidence of PE was demonstrated in 32 of 102 (31.4%) analyzed patients (pts). In 19 patients, centrally localized clots were visualized. Additionally, in 32 patients, lobar, segmental and proximal subsegmental filling defects corresponding to thrombo-embolic material were demonstrated. Moreover, in 14 patients, distal subsegmental filling defects were shown. Alternative diagnoses included: heart failure-related congestion (21 pts), pneumonia (19 pts) and malignancy (5 pts).
Conclusion. The multislice CTPA is an extremely useful imaging modality in patients with clinical suspicion of PE. The examination enables not only the analysis of pulmonary vessels but also evaluation of pulmonary parenchyma and mediastinum. The collimation of 0.625 mm makes it possible to detect the small foci of peripheral embolism.

Streszczenie

Wprowadzenie.Zatorowość płucna (PE) jest częstą, potencjalnie zagrażającą życiu, chorobą. Wczesne rozpoznanie i wdrożenie stosownego leczenia u pacjentów z PE istotnie zmniejsza ryzyko poważnych powikłań. obecnie angiografia tomografii komputerowej tętnic płucnych (CTPA) jest metodą obrazowania z wyboru u pacjentów z klinicznym podejrzeniem PE. Wielorzędowe skanery TK pozwalają na jednoczasowe wykonanie CTPA wraz z wenografią tomografii komputerowej (CTV) żył kończyn dolnych w diagnostyce zakrzepicy żył głębokich (DVT). Nowoczesne dwuenergetyczne skanery TK umożliwiają ilościową ocenę perfuzji płucnej, pomocnej w wykrywaniu mikrozatorowości płucnej.
Cel pracy. ocena wartości diagnostycznej 64-rzędowej TK w wykrywaniu ostrej i przewlekłej PE u pacjentów z podejrzeniem PE w obrazie klinicznym.
Materiał i metody. Retrospektywnej ocenie poddano badania CTPA wykonane w latach 2010–2012 u 102 kolejnych pacjentów (64 kobiet; 38 mężczyzn) z klinicznym podejrzeniem PE. Średnia wieku w analizowanej grupie wyniosła 68,9 lat, zakres wiekowy 34–91 lat. Badania CTPA wykonano na 64-rzędowych skanerach TK za pomocą protokołu „zatorowości płucnej”. Środek kontrastowy podawano dożylnie z prędkością 4,0–5,0 ml/s. Skanowanie wykonywano po 4–6 sekundach od uzyskania intensywnego zakontrastowania w obrębie pnia płucnego (MPA). Dodatkowo u wybranych pacjentów wykonywano CTV i/lub oceniano perfuzję miąższu płuc.
Wyniki. Cechy radiologiczne PE stwierdzono u 32 ze 102 (31,4%) analizowanych pacjentów. U 19 pacjentów uwidoczniono umiejscowione centralnie ubytki zakontrastowania. U 32 pacjentów stwierdzono ubytki zakontrastowania w gałęziach płatowych, segmentalnych oraz proksymalnych subsegmentalnych. U 14 pacjentów uwidoczniono ubytki zakontrastowania dystalnych odcinków gałęzi subsegmentalnych. Badanie CTPA pozwoliło na wykrycie innych chorób: zastoju w krążeniu płucnym (n = 21), zapalenia płuc (n = 19) oraz zmian nowotworowych (n = 5).
Wnioski. Wielorzędowa CTPA jest niezwykle przydatną techniką obrazowania u pacjentów z klinicznym podejrzeniem PE. Badanie to pozwala nie tylko na analizę zakontrastowania tętnic płucnych, lecz również na ocenę płuc i śródpiersia. Submilimetrowa rozdzielczość badania umożliwia wykrycie niewielkich obwodowych ubytków zakontrastowania.

Key words

pulmonary embolism, computed tomography pulmonary angiography, lung perfusion, dual energy computed tomography, computed tomography venography.

Słowa kluczowe

zatorowość płucna, angiografia tomografii komputerowej tętnic płucnych, perfuzja płucna, dwuenergetyczna tomografia komputerowa, wenografia tomografii komputerowej.

References (29)

  1. Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galič N, Pruszczyk P, Bengel F, Brady AJ, Ferreira D, Janssens U, Klepetko W, Mayer E, Remy-Jardin M, Bassand JP; ESC Committee for Practice Guidelines (CPG): Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur Heart J 2008, 29, 2276–2315.
  2. Stein PD, Fowler SE, Goodman LR, Gottschalk A, Hales CA, Hull RD, Leeper KV Jr, Popovich J Jr, Quinn DA, Sos TA, Sostman HD, Tapson VF, Wakefield TW, Weg JG, Woodard PK; PIOPED II Investigators: Multidetector computed tomography for acute pulmonary embolism. N Engl J Med 2006, 354, 2317–2327.
  3. Nikolaou K, Thieme S, Sommer W, Johnson T, Reiser MF: Diagnosing pulmonary embolism: new computed tomography applications. J Thorac Imaging 2010, 25, 151–160.
  4. Kelly AM, Patel S, Carlos RC, Cronin P, Kazerooni EA: Multidetector row CT pulmonary angiography and indirect venography for the diagnosis of venous thromboembolic disease in intensive care unit patients. Acad Radiol 2006, 13, 486–495.
  5. Wells PS, Anderson DR, Rodger M, Ginsberg JS, Kearon C, Gent M, Turpie AG, Bormanis J, Weitz J, Chamberlain M, Bowie D, Barnes D, Hirsh J: Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED d-dimer. Thromb Haemost 2000, 83, 416–420.
  6. Le Gal G, Righini M, Roy PM, Sanchez O, Aujesky D, Bounameaux H, Perrier A: Prediction of pulmonary embolism in the emergency department: the revised Geneva score. Ann Intern Med 2006, 144, 165–171.
  7. Miniati M, Pistolesi M: Assessing the clinical probability of pulmonary embolism. Q J Nucl Med 2001, 45, 287–293.
  8. Remy-Jardin M, Pistolesi M, Goodman LR, Gefter WB, Gottschalk A, Mayo JR, Sostman HD: Management of suspected acute pulmonary embolism in the era of CT angiography: a statement from the Fleischner Society. Radiology 2007, 245, 315–329.
  9. Stein PD, Woodard PK, Weg JG, Wakefield TW, Tapson VF, Sostman HD, Sos TA, Quinn DA, Leeper KV Jr, Hull RD, Hales CA, Gottschalk A, Goodman LR, Fowler SE, Buckley JD; PIOPED II Investigators: Diagnostic pathways in acute pulmonary embolism: recommendations of the PIoPED II investigators. Radiology 2007, 242, 15–21.
  10. Stein PD, Sostman HD, Bounameaux H, Buller HR, Chenevert TL, Dalen JE, Goodman LR, Gottschalk A, Hull RD, Leeper KV Jr, Pistolesi M, Raskob GE, Wells PS, Woodard PK: Challenges in the diagnosis of acute pulmonary embolism. Am J Med 2008, 121, 565–571.
  11. Baile EM, King GG, Muller NL, D’Yachkova Y, Coche EE, Paré PD, Mayo JR: Spiral computed tomography is comparable to angiography for the diagnosis of pulmonary embolism. Am J Respir Crit Care Med 2000, 161, 1010–1015.
  12. Wittram C, Waltman AC, Shepard JA, Halpern E, Goodman LR: Discordance between CT and angiography in the PIoPED II study. Radiology 2007, 244, 883–889.
  13. Bierry G, Kellner F, Barnig C: Management of patients with history of adverse effects to contrast media when pulmonary artery CT angiography is required. Radiology 2007, 245, 919–921.
  14. Waybill MM, Waybill PN: Contrast media-induced nephrotoxicity: identification of patients at risk and algorithms for prevention. J Vasc Interv Radiol 2001, 12, 3–9.
  15. Kornafel O, Baran B, Pawlikowska I, Laszczyński P, Guziński M, Sąsiadek M: Analysis of anatomical variations of the main arteries branching from the abdominal aorta, with 64-detector computed tomography. Pol J Radiol 2010, 75, 38–45.
  16. Waliszewska M, Jakubiak A, Guziński M, Sąsiadek M: Application of the 64-slice computed tomography as a diagnostic method in acute posttraumatic ischaemia of the upper limbs – 3 case reports. Pol J Radiol 2010, 75, 94–97.
  17. Hurwitz LM, Yoshizumi TT, Goodman PC Nelson RC, Toncheva G, Nguyen GB, Lowry C, Anderson-Evans C: Radiation dose savings for adult pulmonary embolus 64-MDCT using bismuth breast shields, lower peak kilovoltage, and automatic tube current modulation. AJR 2009, 192, 244–253.
  18. Parker MS, Hui FK, Camacho MA, Chung JK, Broga DW, Sethi NN: Female breast radiation exposure during CT pulmonary angiography. AJR 2005, 185, 1228–1233.
  19. Stein PD, Henry JW, Gottschalk A: Reassessment of pulmonary angiography for the diagnosis of pulmonary embolism: relation of interpreter agreement to the order of the involved pulmonary arterial branch. Radiology 1999, 210, 689–691.
  20. The PIOPED Investigators: Value of the ventilation/perfusion scan in acute pulmonary embolism. Results of the prospective investigation of pulmonary embolism diagnosis (PIoPED). JAMA 1990, 263, 2753–2759.
  21. Sostman HD, Miniati M, Gottschalk A, Matta F, Stein PD, Pistolesi M: Sensitivity and specificity of perfusion scintigraphy combined with chest radiography for acute pulmonary embolism in PIoPED II. J Nucl Med 2008, 49, 1741–1748.
  22. Goodman LR, Stein PD, Matta F, Sostman HD, Wakefield TW, Woodard PK, Hull R, Yankelevitz DF, Beemath A: CT venography and compression sonography are diagnostically equivalent: data from PIoPED II. AJR 2007, 189, 1071–1076.
  23. Kalva SP, Jagannathan JP, Hahn PF, Wicky ST: Venous thromboembolism: indirect CT venography during CT pulmonary angiography – should the pelvis be imaged? Radiology 2008, 246, 605–611.
  24. Goodman LR, Stein PD, Beemath A, Sostman HD, Wakefield TW, Woodard PK, Yankelevitz DF: CT venography for deep venous thrombosis: continuous images versus reformatted discontinuous images using PIoPED II data. AJR 2007, 189, 409–412.
  25. Hoey ET, Gopalan D, Ganesh V, Agrawal SK, Qureshi N, Tasker AD, Clements L, Screaton NJ: Dual-energy CT pulmonary angiography: a novel technique for assessing acute and chronic pulmonary thromboembolism. Clin Radiol 2009, 64, 414–419.
  26. Kraśnicki T, Podgórski P, Guziński M, Czarnecka A, Tupikowski K, Garcarek J, Sąsiadek M: Novel clinical applications of Dual Energy Computed Tomography. Adv Clin Exp Med 2012, 21, 6, 831–841.
  27. Bauman G, Eichinger M: Ventilation and perfusion magnetic resonance imaging of the lung. Pol J Radiol 2012, 77, 37–46.
  28. Stein PD, Chenevert TL, Fowler SE, Goodman LR, Gottschalk A, Hales CA, Hull RD, Jablonski KA, Leeper KV Jr, Naidich DP, Sak DJ, Sostman HD, Tapson VF, Weg JG, Woodard PK; PIOPED III Investigators: Gadoliniumenhanced magnetic resonance angiography for pulmonary embolism: a multicenter prospective study (PIoPED III). Ann Intern Med 2010, 152, 434–443.
  29. Pilecki S, Gierach M, Lasek W, Drobik P, Junik R: Single photon emission computed tomography in pulmonary embolism – estimation of selected, scintigraphic regions of interests. Pol J Radiol 2010, 75, 43–47.