Advances in Clinical and Experimental Medicine

Adv Clin Exp Med
Impact Factor (IF) – 1.227
Index Copernicus (ICV 2018) – 157.72
MNiSW – 40
Average rejection rate – 84.38%
ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download PDF

Advances in Clinical and Experimental Medicine

2013, vol. 22, nr 2, March-April, p. 253–260

Publication type: original article

Language: English

Comparison of Elastic Properties of Nickel-Titanium Orthodontic Archwires

Porównanie właściwości sprężystych ortodontycznych drutów niklowo-tytanowych

Michał Sarul1,A,B,C,D,E,F, Beata Kawala1,D, Joanna Antoszewska1,C,D,E

1 Department of Orthodontics and Dentofacial Orthopedics, Wroclaw Medical University, Poland

Abstract

Background. Cognizance of the mechanical properties of nickel-titanium archwires is necessary for the management of orthodontic therapy with fixed appliances. Acting on the periodontium with forces that are too heavy may lead to such complications as: pain, tooth root resorption and destruction of the alveolar bone and may also lead to retardation in tooth movement.
Objectives. The aim of the study was to assess the activation and deactivation forces of nickel-titanium archwires: Titanol Superelastic, Copper NiTi 35oC and NeoSentalloy.
Material and Methods. The examined material was 90 samples of Titanol Superelastic, Copper NiTi 35oC and NeoSentalloy with diameters of 0.016 and 0.016 × 0.022. All tests were carried out on the Zwick mechanical tests machine at a temperature of 30oC.
Results. In the group of archwires with diameters 0.016, the levels of deactivation forces were, respectively, from highest to lowest: Titanol Supertelastic, NeoSentalloy, Copper NiTi 35oC. In the group of rectangular archwires 0.016 × 0.022, the highest deactivation forces were released in Titanol Superelastic. With the high levels of deflection, 0.016 × 0.022 NeoSentalloy archwires released statistically significantly higher levels of force than 0.016 x 0.022 Copper NiTi 35o C, but this force diminished rapidly with lower deflection and below 3 mm of deflection, the highest forces were released by Copper NiTi 35oC.
Conclusion. Testing the mechanical properties of the nickel-titanium wires of various diameters, it was found that round section wires release forces which fall within the range of optimal forces.

Streszczenie

Wprowadzenie.Znajomość właściwości mechanicznych drutów niklowo-tytanowych jest niezbędna do prowadzenia terapii ortodontycznej z użyciem stałych aparatów cienkołukowych. Działanie na ozębną zbyt dużej siły może prowadzić do takich komplikacji, jak: ból, resorpcja korzeni zębów oraz kości wyrostka zębodołowego, oraz spowalniać ruch zębów.
Cel pracy. Ocena wartości sił aktywacji i deaktywacji drutów niklowo-tytanowych: Titanol Superelastic, Copper NiTi 35oC and NeoSentalloy.
Materiał i metody. Materiał badany stanowiło 90 próbek drutów: Titanol Superelastic, Copper NiTi 35oC and NeoSentalloy o średnicach 0,016 i 0,016 x 0,022. Wszystkie próbki badano na maszynie testującej Zwick w temperaturze 30oC.
Materiał i metody. Wyniki.
Wyniki. W grupie drutów o średnicy 0,016 cala wyzwalane siły deaktywacji można uszeregować od najwyższych: Titanol Supertelastic, NeoSentalloy, Copper NiTi 35oC. W grupie drutów o średnicy 0,016 × 0,022 największe siły deaktywacji były wyzwalane przez druty Titanol Superelastic. Wśród drutów o średnicy 0,016 × 0,022, przy wyższych zakresach ugięcia druty NeoSentalloy wyzwalały statystycznie większe wartości sił deaktywacji niż Copper NiTi 35oC, lecz te siły zmniejszały się znacząco dla mniejszych wartości ugięcia i poniżej 3 mm ugięcia siły większe wyzwalały druty Copper NiTi 35oC.
Wnioski. Badanie właściwości mechanicznych drutów niklowo-tytanowych o różnych przekrojach poprzecznych wykazało, że druty o przekroju okrągłym wyzwalają siły o wartościach z zakresu sił optymalnych.

Key words

nickel-titanium alloy, modulus of elasticity, orthodontic wires.

Słowa kluczowe

stop niklowo-tytanowy, moduł elastyczności, drut ortodontyczny.

References (27)

  1. Proffit WR, Fields Jr HW: Ortodoncja współczesna. Czelej 2000.
  2. Ryhänen J, Kallioinen M, Tuukkanen J, Lehenkari P, Junila J, Niemelä E, Sandvik P, Serlo W: Bone modeling and cell-material interface responses induced by nickel-titanium shape memory alloy after periosteal implantation. Biomaterials 1999, 20, 14, 1309–1317.
  3. Duerig T, Pelton A, Stockel D: An overview of nitinol medical applications. Mater Sci Eng 1999, A273–275, 149–160a.
  4. Chi FL, Wang SJ, Liu HJ: Auricle reconstruction with a nickel-titanium shape memory alloy as the framework. laryngoscope. 2007, 117, 2, 248–252.
  5. Kusy RP, Greenberg AR: Effects of composition and cross section on the elastic properties of orthodontic archwires. Angle Orthod 1981, 51, 4, 325–341.
  6. Nikolai RJ: Orthodontic Wire: A Continuing Evolution. Semin Orthod 1997, 3, 157–165; A review of contemporary archwires: their properties and characteristics. rP Kusy, Angle Orthod 1997, 67, 3, 197–208.
  7. Kusy RP: A review of contemporary archwires: their properties and characteristics. Angle Orthod 1997, 67, 197–207.
  8. Brantley WA, Eliades T: Materiały ortodontyczne w ujęciu naukowym i klinicznym. Czelej, 2003.
  9. Miura F, Mogi M, Ohura Y, Hamanaka H: The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofac Orthop 1986, 90, 1–10.
  10. Krishnan V, Davidovitch Z: Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofac Orthop 2006, 129, 469e.1–460e.32.
  11. Schwarz AM: Tissue changes incident to orthodontic tooth movement. Int J Orthod 1932, 18, 331–352.
  12. Oppenheim A: Human tissue response to orthodontic intervention of short and long duration. Am J Orthod Oral Surg 1942, 28, 263–301.
  13. Cattaneo PM, Dalstra M, Melsen B: The finite element method: a tool to study orthodontic tooth movement. J Dent res 2005, 84, 428–433.
  14. Schaus JG, Nikolai RJ: localized, transverse, flexural stiffnesses of continuous arch wires. Am J Orthod 1986, 89, 407–414.
  15. Nikolai RJ, Anderson WT, Messersmith ML: Structural responses of orthodontic wires in flexure from a proposed alternative to the existing specification test. Am J Orthod Dentofac Orthop 1988, 93, 496–504.
  16. Kusy RP, Dilley GJ: Elastic Modulus of a Triple-stranded Stainless Steel Arch Wire via Threeand Four-point Bending. J Dent res 1984, 63, 10, 1232–1240.
  17. Johnson S: American Dental Association ASC MD 156; restorative and Orthodontic Materials; Specification #32, 2003.
  18. Sakima MT, Dalstra M, Melsen B: How does temperature influence the properties of rectangular nickel-titanium wires? Eur J Orthod 2006, 28, 282–291.
  19. Mullins WS, Bagby MD, Norman TL: Mechanical behavior of thermo-responsive orthodontic archwires. Dent Mater 1996, 12, 308–314.
  20. Nakano H, Satoh K, Norris R, Jin T, Kamegai T, Ishikawa F, Katsura H: Mechanical properties of several nickeltitanium alloy wires in three-point bending tests. Am J Orthod Dentofac Orthop 1999, 115, 390–395.
  21. Garrec P, Jordan L: Stiffness in Bending of a Superelastic Ni-Ti Orthodontic Wire as a Function of Cross-Sectional dimension. Angle Orthod 2004, 74, 691–696.
  22. Ernst CP, Canbek K, Euler T, Willershausen B: In vivo validation of the historical in vitro thermocycling temperature range for dental materials testing. Clin Oral Invest 2004, 8, 130–138.
  23. McFadden Jr ER, Pichurko BM, Bowman HF, Ingenito E, Burns S, Dowling N, Solway JJ: Thermal mapping of the airways in humans. Appl Physiol 1985, 58, 564–570.
  24. Moore RJ, Watts JTF, Hood JAA, Burritt DJ: Intra-oral temperature variation over 24 hours. Eur J Orthod 1999, 21, 3, 249–261.
  25. Tanne K, Inoue Y, Sakuda M: Biomechanical behavior of the periodontium before and after orthodontic tooth movement. Angle Orthod 1995, 65, 2, 123–128.
  26. Weiland F: Constant versus dissipating forces in orthodontics: the effect on initial tooth movement and root resorption. Eur J Orthod 2003, 25, 335–342.
  27. Melsen B: Tissue reaction to orthodontic tooth movement – a new paradigm. Eur J Orthod 2001, 23, 671–681.