Advances in Clinical and Experimental Medicine

Adv Clin Exp Med
Impact Factor (IF) – 1.227
Index Copernicus (ICV 2018) – 157.72
MNiSW – 40
Average rejection rate – 84.38%
ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download PDF

Advances in Clinical and Experimental Medicine

2012, vol. 21, nr 3, May-June, p. 289–299

Publication type: original article

Language: English

Creative Commons BY-NC-ND 3.0 Open Access

The Bactericidal Activity of Normal Human Serum Against Enterobacteriaceae Rods with Lipopolysaccharides Possessing O-Antigens Composed of Mannan

Bakteriobójcza aktywność normalnej surowicy ludzkiej wobec szczepów z rodziny Enterobacteriaceae z lipopolisacharydami zawierającymi O-antygeny typu mannanowego

Dorota Tichaczek-Goska1,, Danuta Witkowska2,, Agnieszka Cisowska1,, Stanisław Jankowski1,, Andrzej B. Hendrich1,

1 Department of Biology and Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland

2 Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland

Abstract

Background. The susceptibility of bacteria to the bactericidal activity of serum depends on the structure and organization of the bacterial outer membrane. It is known that the structure of the O-specific polysaccharide chain of lipopolysaccharide (LPS) plays an important role in the resistance of bacteria to host immune defenses.
Objectives. The susceptibility of rods belonging to Enterobacteriaceae family to the bactericidal activity of the normal human serum (NHS) was examined. The mechanisms of complement activation were also investigated.
Material and Methods. The study was carried out on 15 strains containing LPSs with O-specific polysaccharides composed of mannan, belonging to the following species: Citrobacter freundii, C. werkmanii, C. braakii, C. youngae, Hafnia alvei, Escherichia coli and Klebsiella pneumoniae. The levels of C3 and C4 complement components, IgG and IgM immunoglobulin in NHS were examined using specific antibodies. The bactericidal activity of NHS and its preparations (HS50/20, HSMgEGTA) was determined. LPSs from E. coli O8 strains were analyzed by polyacrylamide gel electrophoresis (PAGE) in the presence of sodium dodecyl sulphate (SDS).
Results. Eleven strains were sensitive to NHS bactericidal activity, and four were resistant. Only one group of strains was fully susceptible to NHS action. In three other groups, both sensitive and resistant strains were found. The majority of the strains remained susceptible to NHS activity irrespective of which pathway of serum activity was blocked. All E. coli O8 strains contained smooth-type LPSs.
Conclusion. Strains belonging to the same serotype showed variable susceptibility to the bactericidal action of normal human serum. Two mechanisms of the bactericidal activity of NHS have been identified.

Streszczenie

Wprowadzenie. Podatność bakterii na bakteriobójcze działanie surowicy zależy od struktury i organizacji błony zewnętrznej drobnoustroju. Wiadomo, że struktura polisacharydowego łańcucha O-swoistego odgrywa istotną rolę w oporności bakterii na działanie układu odpornościowego organizmu gospodarza.
Cel pracy. Zbadano podatność pałeczek należących do rodziny Enterobacteriaceae na bakteriobójcze działanie normalnej surowicy ludzkiej (NSL). Określono również mechanizm aktywacji układu dopełniacza oraz jego rolę w procesie lizy komórek przez NSL.
Materiał i metody. Badaniami objęto grupę 15 szczepów mających O-antygeny typu mannanowego, należących do gatunków: Citrobacter freundii, C. werkmanii, C. braakii, C. youngae, Hafnia alvei, Escherichia coli i Klebsiella pneumoniae. Oznaczano stężenia składowych dopełniacza C3 i C4 oraz przeciwciał klasy IgG i IgM w NSL. Określano bakteriobójcze działanie NSL oraz jej preparatów (SL50/20, SLMgEGTA) w stosunku do testowanych pałeczek. Wyizolowano i charakteryzowano elektroforetycznie (SDS-PAGE) lipopolisacharydy (LPS) szczepów E. coli O8.
Wyniki. Jedenaście szczepów bakterii było podatnych, a cztery oporne na działanie NSL. Tylko jedna grupa pałeczek była wrażliwa na działanie NSL. W pozostałych grupach drobnoustrojów, mimo że struktury O-antygenowe były identyczne, odnotowano zarówno podatne, jak i niewrażliwe na NSL szczepy. Większość bakterii nie zmieniła swojego wzoru podatności na surowicę, niezależnie od tego, którą z dróg układu dopełniacza inaktywowano. Wszystkie szczepy E. coli O8 miały LPS typu gładkiego.
Wnioski. Szczepy bakteryjne należące do jednego gatunku i serotypu wykazują zróżnicowanie w podatności na lityczne działanie białek układu dopełniacza. Odnotowano dwa mechanizmy bakteriobójczego działania NSL wobec testowanych pałeczek.

Key words

mannan, O-antigen, human serum, bactericidal effect, complement system

Słowa kluczowe

mannan, O-antygen, ludzka surowica, działanie bakteriobójcze, układ dopełniacza

References (39)

  1. Raetz CRH: Biochemistry of endotoxin. Annu Rev Biochem 1990, 59, 129–170.
  2. Jansson P, Lonngren J, Widmalm G: Structural studies of the O-antigen polysaccharides of Klebsiella pneumoniae O5 and Escherichia coli O8. Carbohydr Res 1985, 145, 59–66.
  3. Kocharova NA, Mieszała M, Zatonsky GV, Staniszewska M, Shashkov AS, Gamian A, Knirel YA: Structure of the O-specific polysaccharide of Citrobacter O1 containing an α-D-ribofuranosyl group. Carbohydr Res 2004, 339, 321–325.
  4. Katzenellenbogen E, Romanowska E, Kocharova NA, Shashkov AS, Knirel YA, Kochetkov NK: Structure of the polysaccharide of Hafnia alvei 1204 containing 3,6-dideoxy-3-formamido-D-glucose. Carbohydr Res 1995, 273, 187–195.
  5. Prehm P, Jann B, Jann K: The O9 antigen of Escherichia coli. Structure of the polysaccharide chain. Eur J Biochem 1976, 67, 53–56.
  6. Nelson RD, Shibata N, Podzorski RP, Herron MJ: Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action. Clin Microbiol Rev 1991, 4, 1–19.
  7. Dao DN, Kremer L, Guerardel Y, Molano A, Jacobs WR, Porcelli SA, Briken V: Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages. Infect Immun 2004, 72, 2067– 2074.
  8. Schweinle JE, Ezekowitz RA, Tenner AJ, Kuhlman M, Joiner KA: Human mannose-binding protein activates the alternative complement pathway and enhances serum bactericidal activity on a mannose-rich isolate of Salmonella. J Clin Invest 1989, 84, 1821–1829.
  9. Yokochi T, Inoue Y, Kimura Y, Kato N: Strong interaction of lipopolysaccharides possessing the mannose homopolysaccharides with complement and its relation to adjuvant action. J Immunol 1990, 144, 3106–3110.
  10. Podschun R, Ullmann U: Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998, 11, 589–603.
  11. Ramos A, Damaso D: Extraintestinal infection due to Hafnia alvei. Eur J Clin Microbiol Infect Dis 2000, 19, 708–710.
  12. Gupta N, Yadav A, Choudhary U, Arora D: Citrobacter bacteremia in a tertiary care hospital. Scand J Infect Dis 2003, 35, 765–768.
  13. Farmer JJ. III. Enterobacteriaceae: introduction and identification. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH. Eds. Manual of clinical microbiology. Washington D.C.: American Society for Microbiology 1999, pp. 442–458.
  14. Castro B, Montesinos I, Fuster-Jorge P, Delgado T, Miguel-Gómez MA, Sierra A: Epidemiology of Enterobacteriaceae causing bloodstream infections in neonatal intensive care unit patients. Enferm Infecc Microbiol Clin 2010, 28, 227–232.
  15. Empel J, Baraniak A, Literacka E, Mrówka A, Fiett J, Sadowy E, Hryniewicz W, Gniadkowski M; Beta-PL Study Group. Molecular survey of beta-lactamases conferring resistance to newer beta-lactams in Enterobacteriaceae isolates from Polish hospitals. Antimicrob Agents Chemother 2008, 52, 2449–2454.
  16. Frank MM: Complement deficiencies. Pediatr Clin North Am 2000, 47, 1339–1354.
  17. Kłak M, Jankowski S: The influence of lipopolysaccharides isolated from Enterobacteriaceae strains on the bactericidal activity of normal cord serum. Adv Clin Exp Med 2010, 19, 57–64.
  18. Cisowska A, Bugla-Płoskońska G, Tichaczek-Goska D, Doroszkiewicz W, Jankowski S: The susceptibility of Escherichia coli strains with sialic acid-containing lipopolysaccharides or capsules to the bactericidal action of normal human serum. 7th conference: Molecular biology in diagnostics of infectious diseases and biotechnology. Warsaw: SGGW, 2004, 41–47.
  19. Jankowski S, Rowiński S, Cisowska A, Gamian A: The sensitivity of Hafnia alvei strains to the bactericidal effect of serum. FEMS Immunol Med Microbiol 1996, 13, 59–64.
  20. Fujita T, Matsushita M, Endo Y: The lectin-complement pathway – its role in innate immunity and evolution. Immunol Rev 2004, 198, 185–202.
  21. Markiewski MM, Lambris JD: The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol 2007, 171, 715–727.
  22. Atkinson JP, Frank MM: Bypassing complement: evolutionary lessons and future implications. J Clin Invest 2006, 116, 1215–1218.
  23. Bugla-Płoskońska G, Doroszkiewicz W: Bactericidal activity of normal bovine serum (NBS) directed against some Enterobacteriaceae with sialic acid-containing lipopolysaccharides (LPS) as a component of cell wall. Pol J Microbiol 2006, 55, 169–174.
  24. Mielnik G, Gamian A, Doroszkiewicz W: Bactericidal activity of normal cord serum (NCS) against Gram-negative rods with sialic acid-containing lipopolysaccharides (LPS). FEMS Immunol Med Microbiol 2001, 31, 169–173.
  25. Katzenellenbogen E, Ekiel I, Romanowska E: The structure of the O-specific polysaccharide chain from Citrobacter O23-lipopolysaccharide. Carbohydr Res 1988, 179, 349–357.
  26. Curvall M, Lindberg B, Lonngren J, Nimmich W: Structural studies on the Klebsiella O group 3 lipopolysaccharide. Acta Chem Scand 1973, 27, 2645–2649.
  27. Katzenellenbogen E, Kocharova NA, Zatonsky G.V Kübler-Kiełb J, Gamian A, Shashkov AS, Knirel YA, Romanowska E: Structural and serological studies on Hafnia alvei O-specific polysaccharide of alpha-D-mannan type isolated from the lipopolysaccharide of strain PCM 1223. FEMS Immunol Med Microbiol 2001, 30, 223– 227.
  28. Kocharova NA, Zatonsky GV, Bystrova OV Shashkov AS, Knirel YA, Kholodkova EV, Stanislavsky ES: Structure of the O-specific polysaccharide of Citrobacter braakii O7a, 3b, 1c. Carbohydr Res 2001, 333, 335–338.
  29. Knirel YA, Kocharova NA, Bystrova OV, Katzenellenbogen E, Gamian A: Structures and serology of the O-specific polysaccharides of bacteria of the genus Citrobacter. Arch Immunol Ther Exp 2002, 50, 379–391.
  30. Eidinger D, Bello E, Mates A: The heterocytotoxicity of human serum. I. Activation of the alternative complement pathway by heterologous target cells. Cell Immunol 1977, 29, 174–186.
  31. Fine DP, Marney SR, Colley DG, Sergent JS, Des Prez RM: C3 shunt activation in human serum chelated with EGTA. J Immunol 1972, 109, 807–809.
  32. Westphal O, Jann K: Bacterial lipopolysaccharides: extraction with phenol-water and further application of the procedure. Meth Carbohydr Chem 1965, 5, 83–91.
  33. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685.
  34. Tsai CM, Frasch CE: A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 1982, 119, 115–119.
  35. Gupta RK, Egan W, Bryla DA, Robbins JB, Szu SC: Comparative immunogenicity of conjugates composed of Escherichia coli O111 O-specific polysaccharide, prepared by treatment with acetic acid or hydrazine, bound to tetanus toxoid by two synthetic schemes. Infect Immun 1995, 63, 2805–2810.
  36. Herold G: Medycyna wewnętrzna 4th ed. Warsaw: PZWL, 2006, pp. 1131–1142.
  37. Murray GL, Attridge SR, Morona R: Altering the length of the lipopolysaccharide O-antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. J Bacteriol 2006, 188, 2735–2739.
  38. Jiang G, Sugiyama T, Kato Y, Koide N, Yokochi T: Binding of mannose-binding protein to Klebsiella O3 lipopolysaccharide possessing the mannose homopolysaccharide as the O-specific polysaccharide and its relation to complement activation. Infect Immun 1995, 63, 2537–2540.
  39. Fernandez-Prada CM, Nikolich M, Vemulapalli R Sriranganathan N, Boyle SM, Schurig GG, Hadfield TL, Hoover DL: Deletion of wboA enhances activation of the lectin pathway of complement in Brucella abortus and Brucella melitensis. Infect Immun 2001, 69, 4407–4410.