Advances in Clinical and Experimental Medicine

Adv Clin Exp Med
Impact Factor (IF) – 1.227
Index Copernicus (ICV 2018) – 157.72
MNiSW – 40
Average rejection rate – 84.38%
ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download PDF

Advances in Clinical and Experimental Medicine

2009, vol. 18, nr 2, March-April, p. 121–127

Publication type: original article

Language: English

Analysis of Lower−Extremity Long−Bone Growth During the Fetal Perio

Analiza wzrostu długości kości długich kończyny dolnej w okresie prenatalnym

Alicja Kędzia1,, Jowita Woźniak1,, Krzysztof Dudek2,

1 Department of Normal Anatomy, Wroclaw Medical University, Poland

2 Institute of Machines Design and Operation, Technical University of Wrocław, Poland

Abstract

Objectives. The goal of this survey was a morphometric analysis of the lower−extremity long bones (femur, tibia, and fibula) in human fetuses.
Material and Methods. The analysis comprised 300 lower−extremity anatomical specimens from 150 embryos at morphological ages of 12–30 weeks and within the crown−rump length range of 54–250 mm. There were 69 (46%) female fetuses. The study employed anthropological and preparative methods, image acquisition with a digital camera, a Scion Image for Windows computer measurement system, and statistical methods.
Results. Weekly increases in bone length, size symmetry, and sexual dimorphism were assessed. The results were compared with ultrasound and radiological results available in literature. Neither asymmetry nor sexual dimorphism were detected during the survey. However, differential growth rate was found in the lower−leg bones compared with the femur and these bones showed a nonlinear growth ratio. At the beginning of fetal life (12th week), the lower−leg bones constituted about 63% of the femoral length, but in the 30th week this increased to 72%.
Conclusion. The lower−extremity long−bone lengths were found to be helpful parameters in assessing fetal size and age.

Streszczenie

Cel pracy. Analiza morfometrii kości długich kończyny dolnej (udowej, piszczelowej i strzałkowej) człowieka w okresie prenatalnym.
Materiał i metody. Analizie poddano 300 preparatów kończyn dolnych, 150 płodów w wieku morfologicznym między 12. a 30. tygodniem, w przedziale długości v−tub: 54–250 mm. Płodów żeńskich było 69 (46%). W pracy posługiwano się metodami: antropologiczną, preparacyjną, akwizycją obrazu za pomocą aparatu cyfrowego, komputerowym systemem pomiarów Scion Image for Windows oraz metodami statystycznymi. Wykorzystano testy Shapiro−Wilka, Smirnowa−Kołmogorowa, Manna−Whitneya oraz Wilcoxona.
Wyniki. Oceniono przyrosty tygodniowe długości kości, symetrię wymiarów po lewej i prawej stronie oraz dymorfizm płciowy. Wyniki pomiarów własnych na materiale sekcyjnym porównano z wynikami pomiarów techniką USG i radiologicznych w dostępnej literaturze. Na podstawie przeprowadzonych badań nie stwierdzono asymetrii i dymorfizmu płciowego. Zaobserwowano natomiast zróżnicowane tempo wzrostu kości podudzia w stosunku do kości udowej, o czym świadczy nieliniowy wzrost proporcji między tymi kościami. W początkowym okresie życia płodowego (12. tydzień) kości podudzia stanowią 63% długości kości udowej, w 30. tygodniu wartość ta zwiększa się do 72%.
Wnioski. Długości kości długich kończyny dolnej uznano za parametry pomocne w ocenie wzrostu i wieku płodu.

Key words

fetus, development, lower limb

Słowa kluczowe

płód, rozwój, kończyna dolna

References (30)

  1. Bagnall KM, Jones PRM: Estimating the age of the human foetus from crown−rump measurements. Ann Hum Biol 1975, 2, 387–390.
  2. Bareggi R, Grill V, Zweyer M, Sandrucci MA, Narducci P, Forabosco A: The growth of long bones in human embryological and fetal upper limbs and its relationship to other developmental patterns. Anat Embyol 1994, 189, 19–24.
  3. Bareggi R, Grill V, Zweyer M, Sandrucci MA, Narducci P, Forabosco A: On the assessment of the growth patterns in human fetal limbs: longitudinal measurements and allometric analysis. Early Hum Dev 1996, 45, 11–25.
  4. Benson CB, Doubilet PM: Sonographic prediction of gestational age: accuracy of secondand third−trimester fetal measurements. AJR Am J Roentgenol 1991, 157, 1275–1277.
  5. Carlson BM: Human embryology and developmental Biology. Mosby, St Louis 1999, 450.
  6. Chiarisini D, Barbet J, Copin H, Maillet M, Pompidou A: Scanning electron microscopy of femoral ossification in the human fetus. Bull Assoc Anat (Nancy) 1992, 233, 13–21.
  7. De Biasio P, Prefumo F, Lantieri PB, Venturini PL: Reference values for fetal limb biometry at 10–14 weeks of gestation. Ultrasound Obstet Gynecol 2002, 19, 588–591.
  8. Felts WJL: The prenatal development of the human femur. Am J Anat 1954, 94, 1–44.
  9. Filly RA, Golbus MS, Carey JC, Hall JG: Short−limbed dwarfism: Ultrasonographic diagnosis by mensuration of fetal femoral length. Radiology 1981, 138, 653–656.
  10. Garn SM: Contributions of the radiographic image to our knowledge of human growth. AJR Am J Roentgenol 1981, 137, 231.
  11. Gray DJ, Gardner E: The prenatal development of the human femur. Am J Anat 1970, 129, 121–140.
  12. Hadlock FP, Deter RL, Harrist RB, Park SK: Estimating fetal age: computer−assisted analysis of multiple fetal growth parameters. Radiology 1984, 152, 497–501.
  13. Hadlock FP, Harrist RB, Deter RL, Park SK: Fetal femur length as a predictor of menstrual age: sonographically measured. AJR Am. J. Roentgenol 1982, 138, 875–878.
  14. Issel EP: Ultrasonic measurement of the growth of fetal limb bones in normal pregnancy. J Perina Med 1985, 13(6), 305–313.
  15. Jeanty P, Dramaix−Wilmet M, van Kerkem J, Petroons P, Schwers J: Ultrasonic evaluation of fetal limb growth: part II. Radiology 1982, 143, 751–754.
  16. Jeanty P, Kirkpatrick C, Dramaix−Wilmet D, Struyven J: Ultrasonic evaluation of fetal limb growth. Radiology 1981, 140, 165–168.
  17. Jeanty P: Fetal limb biometry. Radiology 1983, 147, 601–602.
  18. Kędzia A, Woźniak J, Dudek K, Ziajkiewicz M: Mathematical model of the growth of long bones of upper extremities during fetal period, The Computer Aided Scientific Research KOWBAN XV. Wrocław Scientic Society, Wrocław 2008, 209–216.
  19. Kelemen E, Janossa M, Calvo W, Fliender MT: Developmental age estimated by bone−length measurement in human fetuses. Anat Record 1984, 209, 547–552.
  20. Mahony BS, Callen PW, Filly RA: The distal femoral epiphyseal ossification center in the assessment of thirdtrimester menstrual age: sonographic identification and measurement. Radiology 1985, 155, 1, 201–204.
  21. Matsushita K, Shinoda K, Watanabe H, Akiyoshi T: Multivariate analysis of limb long bone growth during the human prenatal period. Tohoku J Exp Med 1995, 176, 109–120.
  22. Mazur A: Characteristics of terminal wisps of placentas in foetal hypotrophy, doctor thesis. Wrocław 2008, 9–19.
  23. Merz E, Pehl S, GoldhoferW, Hoffmann G: Biometry of the large bones of fetal extremities in the 3d trimester. Ultraschall Med 1984, 5, 136–43.
  24. O’Brien G, Qeeenan JT, Campbell S: Ultrasound measurement of fetal limb bones. Am J Obst Gyn 1980, 138, 297–302.
  25. O’Brien G, Qeeenan JT: Growth of the ultrasound fetal femur length during normal pregnancy. Part I. Radiology 1981, 141, 833–837.
  26. Pan N: Length of long bones and their proportion to body height in Hindus. J Anat 1924, 58, 4, 374–378.
  27. Partyka C: Rozwój kości udowej u płodów ludzkich w świetle badań antropometrycznych, densytometrycznych i histometrycznych, doctor thesis. Szczecin 2003, 88–89.
  28. Scheuer JL, Musgrave JH, Evans SP: The estimation of late fetal and perinatal age from limb bone length by linear and logarithmic regression. Ann Hum Biol 1980, 7, 257–265.
  29. Seeds JR, Cefalo RC: Relationship of the fetal limb lengths to both biparietal diameter and gestational age. Obstet. Gynecol 1982, 60, 680–685.
  30. Vasconcellon H, Prates J, Moraes L, Rodrigues HC: Growth of the human metatarsal bones in the fetal period (13–24 weeks post conception): A quantitative study. Surg Radiol Anat 1992, 14, 315–318.