Advances in Clinical and Experimental Medicine

Adv Clin Exp Med
Impact Factor (IF) – 1.227
Index Copernicus (ICV 2018) – 157.72
MNiSW – 40
Average rejection rate – 84.38%
ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download PDF

Advances in Clinical and Experimental Medicine

2008, vol. 17, nr 3, May-June, p. 293–305

Publication type: original article

Language: English

Creative Commons BY-NC-ND 3.0 Open Access

The Influence of Quercetin on Plasma Lipid Profile of Laboratory Rats Fed Fresh and Oxidized Fats

Wpływ kwercetyny na profil lipidowy osocza szczurów doświadczalnych na diecie z tłuszczem świeżym i utlenionym

Bożena Regulska−Ilow1,, Rafał Ilow1,, Przemysław Kowalski2,

1 Department of Food Science and Nutrition, Silesian Piasts University of Medicine in Wrocław, Poland

2 Department of Pathological Anatomy, Silesian Piasts University of Medicine in Wrocław, Poland

Abstract

Background. Lipids contained in the diet affect the composition of cell membranes in organs and organelles and influence their permeability, which may condition the bioactivity of quercetin.
Objectives. The aim of the study was to evaluate the effect of quercetin on plasma lipid profile of experimental rats under conditions of oxidative stress caused by oxidized dietary fats.
Material and Methods. Using rats fed a diet with an 8% fat content, the influence of quercetin on total lipid (TL), triglyceride (TG), total cholesterol (TCH), HDL−cholesterol (HDL−CH), and phospholipid concentrations in the plasma were assessed. The atherogenic index was calculated according to the formula (TCH – HDL−CH)/HDLCH. The source of pro−oxidants in the rats’ diet was either oxidized sunflower oil or oxidized lard. The four−week experiment involved 80 male Buffalo rats, of which 40 received 0.075% quercetin as a supplement to their diet (60 quercetin per mg/kg of the rat’s body mass).
Results. Increased levels of TG were observed in the plasma of the rats fed a diet with quercetin and fresh oil (141.4 ± 11.3 vs. 62.4 ± 17.4 mg/dl) and quercetin and oxidized oil (112.0 ± 12.1 vs. 55.8 ± 11.8 mg/dl) compared with the respective controls. The mean plasma TL level increased from 2.5 ± 0.6 to 3.5 ± 0.3 g/l in the rats fed quercetin and fresh oil compared with the control animals. Rats fed a diet with quercetin and fresh oil revealed a decreased HDL cholesterol level (34.3 ± 6.3 vs. 27.1 ± 3.0 mg/dl), while the level increased in the rats fed a diet including fresh lard and quercetin (27.4 ± 2.7 vs. 35.1 ± 3.8 mg/dl) compared with the groups on diets without quercetin. Decreased plasma HDL cholesterol levels were observed in the rats fed oxidized fats and quercetin, i.e. oil (38.1 ± 8.0 vs. 30.6 ± 3.7 mg/dl) or lard (33.2 ± 3.3 vs. 27.9 ± 3.1 mg/dl), compared with the groups on diets without quercetin. Rats on a diet with oxidized oil had increased atherogenic index after quercetin addition (1.12 ± 0.2 vs. 0.59 ± 0.3). Quercetin did not affect the plasma levels of TCH and phospholipids in either of the investigated groups. Compared with those of controls, the livers of the animals fed a diet with quercetin and fresh oil revealed accumulation of lipids, which was manifested by increased values of lipid metabolism parameters and confirmed by histopathological evaluation of liver samples.
Conclusion. Under the experimental conditions, quercetin did not show any beneficial effect on plasma lipid profile in animals fed diets with oxidized fats (oil and lard). The addition of quercetin to the diet resulted in a number of unfavorable effects of oxidized fat consumption in the animals which were not observed in the rats fed diets without quercetin.

Streszczenie

Wprowadzenie. Tłuszcze zawarte w diecie, warunkując skład błon komórkowych narządów i organelli, wpływają na ich przepuszczalność, co może być czynnikiem, od którego zależy aktywność biologiczna kwercetyny.
Cel pracy. Ocena wpływu kwercetyny na profil lipidowy osocza szczurów doświadczalnych w warunkach stresu oksydacyjnego wywołanego utlenionymi tłuszczami pokarmowymi.
Materiał i metody. Podawano szczurom diety z 8% zawartością tłuszczu i 0,5% dodatkiem cholesterolu i oceniano wpływ kwercetyny na stężenie lipidów ogólnych (TL), triglicerydów (TG), cholesterolu całkowitego (TCH), HDL−cholesterolu (HDL−CH) i fosfolipidów w osoczu. Źródłem prooksydantów w diecie szczurów były utlenione: olej słonecznikowy i smalec. Czterotygodniowe doświadczenie żywieniowe przeprowadzono z udziałem 80 szczurów, samców, rasy Buffalo, których 40 otrzymywało 0,075% dodatek kwercetyny jako suplement diety (60 mg kwercetyny/kg masy ciała).
Wyniki. Obserwowano wzrost stężenia TG w osoczu szczurów na diecie z kwercetyną i olejem świeżym (141,4 ± 11,3 vs 62,4 ± 17,7 mg/dl) oraz kwercetyną i olejem utlenionym (112,0 ± 12,1 vs 55,8 ± 11,8 mg/dl) w stosunku do odpowiedniej grupy kontrolnej. Wzrosło średnie stężenie TL, z 2,5 ± 0,6 do 3,5 ± 0,3 g/l, w osoczu szczurów na diecie z kwercetyną i świeżym olejem w porównaniu do grupy kontrolnej. W osoczu szczurów na diecie z kwercetyną i świeżym olejem nastąpił spadek stężenia frakcji HDL cholesterolu (34,3 ± 6,3 vs 27.1 ± 3.0 mg/dl), a w osoczu szczurów na diecie ze świeżym smalcem i kwercetyną wzrost stężenia frakcji HDL cholesterolu (27,4 ± 2,7 vs 35,1 ± 3,8 mg/dl) w stosunku do grup na diecie bez kwercetyny. Obserwowano obniżenie stężenia frakcji HDL cholesterolu w osoczu szczurów karmionych utlenionymi tłuszczami i kwercetyną, olejem (38,1 ± 8,0 vs 30,6 ± ± 3,7 mg/dl) lub smalcem (33,2 ± 3,3 vs 27,9 ± 3,1) w stosunku do grup na diecie bez kwercetyny. Nastąpił wzrost współczynnika aterogenności w grupie szczurów na diecie z utlenionym olejem (1,12 ± 0,2 vs 0,59 ± 0,3). Kwercetyna nie wpływała na stężenia TCH i fosfolipidów w osoczu szczurów doświadczalnych w żadnej z badanych grup. W wątrobach zwierząt na diecie z kwercetyną i świeżym olejem w porównaniu z grupą kontrolną obserwowano kumulację lipidów wyrażoną wzrostem wartości wskaźników przemian lipidowych i potwierdzonych wynikami badania histopatologicznego wycinków wątrobowych.
Wnioski. W warunkach doświadczenia kwercetyna nie wykazywała działania korzystnego na profil lipidowy w osoczu zwierząt na diecie z utlenionymi tłuszczami (olejem i smalcem). Dodatek kwercetyny do diet spowodował wystąpienie u zwierząt niekorzystnych skutków spożywania tłuszczów utlenionych, których nie stwierdzono u szczurów na diecie bez kwercetyny.

Key words

rats, quercetin, oxidized fats, lipids profile, histopathology

Słowa kluczowe

szczury, kwercetyna, profil lipidowy, histopatologia

References (39)

  1. Hertog MG, Freskens EJ, Hollman PC, Katan MB, Kromhout D: Dietary flavonoids and cancer risk in the Zuphten Elderly Study. Nutr Cancer 1994, 22, 175–184.
  2. Peterson J, Dwyer J: Flavonoids: dietary occurrence and biochemical activity. Nutr Res 1998, 18, 1995–2018.
  3. Hertog MGL, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S: Flavonoid intake and long−term risk of coronary heart disease and cancer in the Seven Countries Study. Arch Intern Med 1995, 155, 381–386.
  4. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N: Dietary intakes of flavonols, flavones and izoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 2000, 130, 2243–2250.
  5. Chun OK, Chung SJ, Song WO: Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 2007, 137, 1244–1252.
  6. Balestrieri ML, Schiano C, Felice F, Casamassimi A, Balestrieri A, Milone L, Servillo L, Napoli C: Effect of low doses of red wine and pure resveratrol on circulating endothelial progenitor cells. J Biochem 2008, 143, 179–186.
  7. Aherne SA, O`Brien N: Dietary flavonoids: Chemistry, food content, and metabolism. Nutrition 2002, 18, 75–81.
  8. Erlund I: Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 2004, 24, 851–874.
  9. Formica JV, Regelson W: Review of the biology of quercetin and related bioflavonoids. Food ChemToxic 1995, 33, 1061–1080.
  10. Lee SY, Munerol B, Pollard S, Youdim KA, Pannala AS, Kuhnle GG, Debnam ES, Rice−Evans C, Spencer JP: The reaction of flavanols with nitrous acid protects against N−nitrosamine formation and leads to the formation of nitroso derivatives which inhibit cancer cell growth. Free Rad Biol Med 2006, 40, 323–334.
  11. Jenkins KJ, Atwal AS: Flavonoids increase tissue essential fatty acids in vitamin E−deficient chicks. J Nutr Biochem 1995, 6, 97–103.
  12. Ruiz−Gutierrez V, Muriana FJG: Effect of ingestion of thermally oxidized frying oil on desaturase activities and fluidity in rat−liver microsomes. J Nutr Biochem 1992, 3, 75–79.
  13. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D: Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 1993, 342, 1007–1011.
  14. Barzanti V, Pregnolato P, Maranesi M, Bosi I, Baracca A, Solaini G, Turchetto E: Effect of dietary oils containing graded amounts of 18:3 n−6 and 18:4 n−3 on cell plasma membranes. J Nutr Biochem 1995, 6, 21–26.
  15. Kotkat HM, Rady AA, Nemcsok J: Effect of dietary fish oil (active EPA−30) on liver phospholipids in young and aged rats. Comp Biochem Physiol Part A Mol Integr Physiol 1999, 122, 283–289.
  16. Cohen LA, Rose DP, Wynder EL: A rationale for dietary intervention in postmenopausal breast cancer patients: an update. Nutr Cancer 1993, 19, 1–10.
  17. Hayam I, Cogan U, Mokady S: Dietary oxidized oil enhances the activity of (Na+K+)ATPase and acetylocholinesterase and lowers the fluidity of rat erythrocyte membrane. J Nutr Biochem 1993, 4, 563–586.
  18. Hochgraf E, Cogan U, Mokady S: Dietary oxidized linoleic acids enhances liver cholesterol biosynthesis and secretion in rats. J Nutr Biochem 2000, 11, 176–180.
  19. Lu YF, Lo YCh: Effect of deep frying oil given with and without dietary cholesterol on lipid metabolism in rats. Nutr Res 1995, 15, 1783–1792.
  20. Williams MJ, Sutherland WH, McCormick MP, de Jong SA, Walker RJ, Wilkins GT: Impaired endothelial function following a meal rich in used cooking fat. J Am Coll Cardiol 1999, 33, 1050–1055.
  21. Ammu K, Raghunath MR, Sankar TV, Lalitha KV, Devadasan K: Repeated use of oil for frying fish. Effects of feeding the fried fish to rats. Nahrung 2000, 5, 368–372.
  22. Eder K: The effects of a dietary oxidized oil on lipid metabolism in rats. Lipids 1999, 14, 717–724.
  23. Lee SH, Jeong TS, Park YB, Kwon YK, Choi MS, Bok SH: Hypocholesterolemic effect of hesperetin mediated by inhibition of 3−hydroxy−3 methylglutaryl coenzyme A reductase and acyl coenzyme A: cholesterol acyltransferase in rats fed high−cholesterol diet. Nutr Res 1999, 19, 1245–1258.
  24. Park SY, Bok SH, Jeon SM, Park YB, Lee SJ, Jeong TS, Choi MS et al.: Effects of rutin and tannic acids supplements on cholesterol metabolism in rats. Nutr Res 2002, 22, 283–295.
  25. Czerny B, Put A, Myśliwiec Z, Juzyszyn Z: The influence of quercetin on some parameters of lipid metabolism in rats chronically exposed to ammonium fluoride. Fluoride 2000, 33, 27–32.
  26. Fremont L, Gozzelino MT, Franchi MP, Linard A: Dietary flavonoids reduce lipid peroxidation in rats fed polyunsaturated or monounsaturated fat diets. J Nutr 1998, 128, 1495–1502.
  27. Reeves PG, Nielsen FH, Fahey GC: AIN−93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN−76A rodent diet. J Nutr 1993, 123, 1939–1951.
  28. Ziemlański Ś, Panczenko−Kresowska B, Budzyńska−Topolewska J, Żelazkiewicz K, Kołakowska A: Effect of variously oxidized marine fish fat on guinea pig organism. Acta Aliment Polon 1992, 17/31, 159–169.
  29. Daniewski M, Pawlicka M, Filipek A, Jacórzyński B, Mielniczuk E, Balas J, Domina P: Assessment of quality control tests for frying fat of french fries. Pol J Human Nutr Metab 2001, 28, 132–139.
  30. Firestone D: Worldwide regulation of frying fats and oils. INFORM 1993, 4, 1366–1371.
  31. Roche H M: Unsaturated fatty acids. Proc Nutr Soc 1999, 58, 397–401.
  32. Salter M, Mangiapane EH, Bennet AJ, Bruce JS, Billett MA, Anderton KL, Marenah ChB, Lawson N, White DA: The effect of different dietary fatty acids on lipoprotein metabolism: concentration−dependent effects of diets enriched in oleic, myristic, palmitic and stearic acids. Br J Nutr 1998, 79, 195–202.
  33. Allan FJ, Thompson KG, James KAC, Manktelow BW, Koolaard JP, Johnson RN, McNutt PV: Serum lipoprotein cholesterol and triglyceride concentrations in pigs fed diets containing fish oil, milkfat, olive oil and coconut oil. Nutr Res 2001, 21, 785–795.
  34. Chi MS, Ray RL, Williams DC, Tuig MV, Galbreath K: Effects of dietary fat on blood pressure and plasma lipids in spontaneously hypertensive rats. Nutr Res 1999, 19, 917–925.
  35. Hayek T, Fuhrman B, Vaya J, Rosenblat M, Belinky P, Coleman R, Elis A, Aviram M: Reduced progression of atherosclerosis in apolipoprotein E−deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler Thromb Vasc Biol 1997, 17, 2744–2749. 304 B. REGULSKA−ILOW, R. ILOW, P. KOWALSKI
  36. Zduńczyk Z, Freinagel S, Wróblewska M, Juśkiewicz J, Oszmiański J, Estrella I: Biological activity of polyphenol extracts from different plant sources. Food Res Int 2002, 35, 183–186.
  37. Bok SH, Shin YW, Bae KH, Jeong TS, Kwon YK, Park YB, Choi MS: Effects of naringin and lovastatin on plasma and hepatic lipids in high−fat and high−cholesterol fed rats. Nutr Res 2000, 20, 1007–1015.
  38. Meyer AS, Heinonen M, Frankel EN: Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin, and ellagic acid on human LDL oxidation. Food Chem 1998, 61, 71–75.
  39. Juśkiewicz J, Zduńczyk J, Wróblewska M, Oszmiański J, Hernandez T: The response of rats to feeding with diets containing grapefruit flavonoid extract. Food Res Int 2002, 35, 201–205.